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ABSTRACT

Multi-domain CTR prediction helps a single recommender model
serve multiple domains with awareness of their relatedness, and
existing methods usually add domain-specific layers on a shared
model to consider domain characteristics. However, different do-
mains may have distinct feature spaces and importance, and the
shared model cannot effectively unify them and may neglect useful
domain relations. In this paper, we propose a multi-level domain
adaptation method for multi-domain CTR prediction. It introduces
domain awareness to many critical steps in CTR prediction, includ-
ing feature embedding, feature selection, and feature representa-
tion, to better bridge and fuse multi-domain signals. Concretely,
we maintain a set of meta-embeddings for each feature field and
compose them into domain-aware feature embeddings. We then
select them in a domain-aware way to promote informative features
for different domains. Finally, we use a domain-adaptive router to
select proper submodels from multiple candidates to learn domain-
specific representations. Extensive experiments on both public and
proprietary datasets validate the effectiveness of our method. Its
online deployment also achieves notable improvements over well-
crafted predecessors.
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1 INTRODUCTION

Click-through rate (CTR) prediction is critical for many personal-
ized services, such as e-commerce recommendation and targeted
advertising [23, 24, 27]. These services usually require to handle
items across different domains to satisfy various user needs [5, 25].
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Figure 1: A comparison of two multi-domain CTR prediction
frameworks.

Since domains can be divergent in their characteristics, it may
be suboptimal to simply mix multi-domain data for model train-
ing [19]. Many methods train and maintain separate models for
each domain [15], which is quite cumbersome and expensive in
real-world scenarios with various domains [8, 20, 29].

To reduce the training and maintenance overhead of online rec-
ommender systems, multi-domain CTR prediction aims to handle
multiple domains with a single model and exploit the inherent
relatedness among domains [5, 17, 19, 21, 26, 30]. A common para-
digm for multi-domain CTR prediction is first using a base model
shared among different domains for feature representation and then
building domain-specific models on it to adapt to domain character-
istics [6], as shown in Fig. 1(a). For example, He et al. [6] proposed
to use a shared bottom network to generate common feature rep-
resentations for different domains and add domain-specific layers
to consider domain characteristics. Sheng et al. [19] proposed to
combine a shared model and domain-specific models via element-
wise product to generate domain-aware feature representations.
However, different domains usually have huge barriers in terms
of their feature spaces and feature importance [1, 2, 9, 11, 14, 22],
which may hinder the shared model from unifying multi-domain
information and capturing domain commonalities.

In this paper, we propose a multi-level domain adaptation frame-
work for multi-domain CTR prediction, named AdaptiveCTR. In-
stead of using a partially shared model across domains, our method
is fully domain-adaptive in different critical steps of CTR predic-
tion, including feature embedding, feature selection, and feature
representation (Fig. 1(b)), which can better consider diverse domain
characteristics and synthesize multi-domain information. Specifi-
cally, we first convert each raw feature into its meta-embeddings
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Figure 2: The architecture of AdaptiveCTR.

and compose them into domain-aware feature embeddings accord-
ing to domain characteristics, where the same feature is represented
differently in different domains. Next, we use domain information
to guide feature selection to recognize salient features for each
domain. Finally, we use multiple submodels to learn feature repre-
sentations and employ a domain-adaptive router to select the results
to get informative and domain-aware hidden representations for
CTR prediction. We conduct experiments on a public dataset and a
proprietary dataset collected from a commercial advertising plat-
form, and the results validate the effectiveness of our method. We
have deployed AdaptiveCTR in an online Ad system and achieved
notable improvements over the previous base models.

2 OUR APPROACH

Here we introduce our AdaptiveCTR method in detail. Its overall
framework is shown in Fig. 2. It receives a set of user and item
features as the input, and outputs a click probability score for per-
sonalized recommendation. Our method mainly contains three
levels of feature processing, including feature embedding, feature
selection, and feature representation, which gradually converts raw
features into informative hidden representations for CTR predic-
tion. These steps are all domain-adaptive due to the guidance of
domain information, thereby the model can fully consider domain
characteristics to better union heterogeneous but relevant signals
in different domains. The details of each step are introduced below.

2.1 Domain-adaptive Feature Embedding

Maintaining one embedding for each feature is a common practice
in existing methods [3]. However, the same feature may evoke
different implications and semantics in different domains, which is

difficult to be condensed by a single embedding. Thus, we propose
to maintain a set of meta-embeddings for each feature and compose
them differently according to domain characteristics to generate
domain-specific feature embeddings. Specifically, we denote the
meta-embeddings of the i-th feature field as E; € RA¥h where h is
the number of meta-embeddings and d is the embedding dimension.
We use a domain-specific gating network to select a proper subset of
meta-embeddings and further compose them into a unified feature
embedding. Denote the embedding of domain ID as ey . It helps
compute a gating score vector g; for the meta-embeddings of the
i-th field as follows:

gi = softmax(U;z; + az;), z; = ReLU(Wijeq), (1)

where W; € RM>d and U; € RAXE are parameters, « is a learnable
factor that controls skip-connections. The output embedding e; of
i-th field is computed by e; = E;g;. In this way, feature embeddings
are adaptively generated based on domain characteristics.

2.2 Domain-adaptive Feature Selection

Selecting salient features is essential for CTR prediction [12, 13].
Different domains may be divergent in their feature spaces, and
even the same feature may yield disparate importance in different
domains. Thus, we propose a domain-adaptive feature selection
method to assign features different importance weights to highlight
domain-sensitive features. Denote all feature embeddings as E =

[e1, ez, ..., en]. We compute a feature weighting vector a as:
WgkE) (W
a = softmax [ WKE) Woea) @
Vd

where W and W are parameters. The vector is used to weight
different feature embeddings via element-wise product, i.e., V =
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[vi, - -, vN] = [alel, cee ,aNef] (V is the weighted embedding
matrix). In this way, features are promoted or demoted based on
their importance in different domains, which enables the model to
adaptively find proper feature sets to enhance domain modeling.

2.3 Domain-adaptive Feature Representation

After feature selection, the model learns hidden feature representa-
tions by modeling feature relatedness [18]. Since features may form
various relations in different domains, we use a domain-adaptive
feature representation module with K stacked adaptive blocks to
generate domain-aware feature representations. Taking the first
block as an example, we flatten V into a vector v and transform it
by h = tanh (W,v + bj,), where Wy, and by, are parameters. This
vector is further processed by M multi-layer perceptrons (MLPs) to
generate multiple feature representations, where a domain-adaptive
router picks the most suitable one as domain-aware feature repre-
sentations (we prefer top-1 selection due to its inference efficiency).
The raw weighting score s; of the i-th MLP is as follows:
wle
L Al )
2 j AL
where w; represent parameters. Since the top-1 selection operation
is not differentiable, we use Gumbel-Softmax [7] to help back-
propagation in model training. The final weighting score p; of the
i-th model is formulated as follows:
o losts0) g )
pi= W gi = —log(—log(u)), u; ~U(0,1). (4
P
Denote the output of the i-th MLP as r;, and the final output feature
representation r for model training is computed by r = Z?;I 1 piti. At
the inference stage, only the MLP with the largest weighting score is
activated, i.e., r = r;, where i = argmax(p;). In this way, the model
can select different submodules to process data in different domains
without increasing computational costs in online inference. To
facilitate gradient propagation, we introduce a residual connection
between the input and output of each block. The final output from
the top adaptive block is denoted as r’.

2.4 Click Prediction

Finally, we compute the click probability score based on the feature
representation r’. We apply a linear layer to r’ to get a click score
U that reflects user-item relevance, which is formulated as g, =
er’ + by (W, and b, are parameters). To consider domain impacts
on click prediction, we derive a domain bias score 7 from the
domain embedding by 7;, = wZed + by, (wp, and by, are parameters).
Both scores are added together to form a unified click probability
score ¢, which is further normalized by the sigmoid function. The
loss function £ for model training is the cross-entropy between
the predicted click score and label on each instance.

3 EXPERIMENTS
3.1 Datasets

We conduct extensive experiments on two datasets. The first one is
Ali-CCP [16]!, which is a public dataset gathered from real logs in

Uhttps://tianchi.aliyun.com/dataset/dataDetail?datald=408
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Alimama. It contains 3 domains, 17 feature fields, and 8.5 million
samples, where the training/test sets are split by time. The second
one is a proprietary dataset (denoted as “Industrial”) collected from
our advertising platform in Mar. 2022. It contains 6 domains, 31
feature fields, and 2.2 million samples. We use the data in the first
3 days for training and validation, and use the rest data for test.
Detailed statistics of the two datasets are summarized in Table 1.
We can see that different domains have quite different CTRs, which
is a strong indication of domain gaps.

Table 1: The example percentage and average CTR of each
domain in Ali-CCP and Industrial.

Domains Ali-CCP Industrial

#1 #2 #3 #1 #2 #3 #4 #5 #6
Percentage | 37.5% 61.7% 0.80% | 80.4% 8.68% 3.84% 3.76  2.52% 0.77%
CTR 4.00% 3.81% 4.39% | 5.03% 1.92% 8.23% 2.06% 27.5% 0.82%

3.2 Experimental Settings

Following common practices, we report the AUC of each domain
and the overall AUC calculated on all samples as the performance
metrics. In our experiments, the dimensions of feature embeddings
are set to 5. We use 4 meta-embeddings for each feature, and use 3
adaptive blocks with 3 submodels in each block. We use Adam [10]
for optimization and set the learning rate to 2e — 5. The value of
7 is set to 1. The batch size is 128. The baselines are implemented
based on the FuxiCTR library [28].

3.3 Offline Evaluation

We compare AdaptiveCTR with several baselines to verify its ef-
fectiveness. Two of them are single-domain methods, including (1)
DNN, a recommendation model based on deep neural networks;
and (2) DeepFM [4], a popular recommendation method based on
deep factorization machine. In these methods, we mix all samples
from different domains to train a unified model. Another baseline is
MMOoE [16], which is a canonical method for multi-task learning.
Here we adapt it for multi-domain CTR prediction, where each
fully-connected network is treated as an expert, and the number of
experts is equal to the number of domains. The rest two baselines are
multi-domain methods, including (1) DADNN [6], which employs
a shared bottom model to learn generic feature representations and
domain-specific layers with a domain router to generate the output
for each domain; and STAR [19], the star topology fully-connected
neural network which factorizes the model for each domain into a
shared centered model and a domain-specific model. The results of
these methods on the two datasets are shown in Table 2, from which
we have several observations. First, compared with single-domain
methods such as DNN and DeepFM, multi-task or multi-domain
methods achieve better performance. This is because different do-
mains may have huge gaps and it is usually suboptimal to simply
mix multi-domain training data. In addition, we find DADNN has a
similar performance as MMoE, which may be because the router
mechanism in DADNN is similar to the mixture-of-expert mech-
anism in MMoE. STAR outperforms DADNN and MMoE, which
is probably because it has more domain-specific model compo-
nents and thereby can better overcome domain barriers. Moreover,
AdaptiveCTR shows superior performance across most domains
compared to other methods on both Ali-CCP and Industrial datasets
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Table 2: Evaluation results of different methods on the Ali-CCP and Industrial datasets. The best results are in bold and the
second best results are underlined for each column. The best overall AUC results are marked with *.

Ali-CCP Industrial
Methods
#1 #2 #3 Overall #1 #2 #3 #4 #5 #6 Overall
DNN 0.5866  0.5838  0.5684 0.5849 0.8688 0.8435 0.8576  0.8490 0.8244  0.6554 0.8560
DeepFM 0.5989  0.5972  0.5773 0.5980 0.8693  0.8415 0.8548 0.8431 0.8247 0.6283 0.8566
MMoE 0.6046  0.6000  0.5825 0.6019 0.8703  0.8464 0.8581 0.8499  0.8251  0.6597 0.8574
DADNN 0.6041  0.5994 0.5836 0.6015 0.8700  0.8447 0.8589  0.8528 0.8219 0.6611 0.8577
STAR 0.6074  0.6021  0.5847 0.6036 0.8711 0.8516 0.8631  0.8523 0.8241 0.6828  0.8596
AdaptiveCTR | 0.6086 0.6117 0.5897 0.6102* | 0.8729 0.8526 0.8655 0.8566 0.8270 0.6725 0.8621*
Z%Improv. 0.20% 1.59% 0.86% 1.09% 0.21% 0.12% 0.28% 0.45% 0.23%  -1.51% 0.29%
Table 3: Online A/B test results on our advertising platform. 0.62
Domains #1 #2 #3 #4 #5 #6 o082 6102
0.611 60866082 g7 5071 6085
CVR +4.3% | +18% | +3.1% | +15% | +4.5% | +12% p 1 6053
COPC +1.6% | +8.4% | +3.4% | +3.4% | +10% | +21% 0.60
2
(except for a minor Domain#6 on Industrial). This is because our 0.59 . =
method can consider domain characteristics in all steps of our m
model, thereby is less suffered from domain gaps due to its high 058 e . LRl
domain adaptivity. In addition, since some model components (e.g., o Dongiadap g eatt S iggion
meta-embeddings and MLP models) are aware of information in all 057 _ . .
Domain #1 Domain #2 Domain #3 Overall

domains, the commonalities between domains can also be effec-
tively encoded. Thus, AdaptiveCTR is more effective than baselines
in multi-domain CTR prediction.

3.4 Online Evaluation

We deploy AdaptiveCTR online and conduct an A/B test on a real-
world CVR (post-click conversion rate) recommendation scenario
in our online advertising platform. We use CVR and conversion
over predicted conversion (COPC) as the metrics. Table 3 shows
the conversion rate improvements over a well-performed single-
domain model from April 15th to May 15th. Note that the baseline
models are trained separately on the logs of each domain. From the
results, we observe notable CVR and COPC improvements over the
base model in all domains. For example, we achieve 4.3% of CVR im-
provement and 1.6% of COPC improvement in Domain#1, which is
a major domain that occupies around 80% of clicks. This shows that
the data from minor domains can provide complementary informa-
tion to improve recommendation performance in major domains. In
the rest domains, the average improvements are 17.4% and 8.5% in
terms of CVR and COPC. It reveals that the rich supervision signals
in multi-domain data can alleviate the data sparsity problem and
help boost the model performance. These results demonstrate the
effectiveness of our approach in improving the model recommen-
dation performance in both major and minor domains. Up to now,
our method has been deployed on our online advertising platform
to serve multiple-domain traffic with a single model.

3.5 Ablation Study

Here we verify the effectiveness of different components in Adap-
tiveCTR. The AUC scores of AdaptiveCTR without domain-adaptive
feature embedding, domain-adaptive feature selection, or domain-
adaptive feature representation on the Ali-CCP dataset are shown

Figure 3: Ablation study of AdaptiveCTR.

in Fig. 3 (the results on the Industrial dataset show similar patterns).
We find that domain-adaptive feature selection plays the most im-
portant role in our method. It reflects that selecting salient features
in a domain-aware way is important for overcoming domain gaps.
In addition, the domain-adaptive feature embedding mechanism
also contributes to the improvements. This shows that adaptively
learning domain-specific embeddings for the same feature can help
exploit multi-domain information. Besides, although AdaptiveCTR
achieves the best performance in Domain#1 if the feature repre-
sentation module is not domain-adaptive, its overall performance
is suboptimal. It is because the domain-adaptive feature represen-
tation module can help learn more domain-discriminative feature
representations. In summary, the ablation studies show the contri-
bution of each component in our method.

4 CONCLUSION

In this paper, we propose a multi-level domain adaptation method
named AdaptiveCTR for multi-domain CTR prediction. It intro-
duces domain adaptability to the main steps of CTR prediction,
including feature embedding, feature selection, and feature repre-
sentation. By using domain information to guide these processes,
the model can fully overcome the huge barriers between domains
and automatically learn informative features according to domain
characteristics. Extensive offline experimental results on a public
dataset and an internal dataset show the effectiveness of our Adap-
tiveCTR method. Furthermore, a one-month online A/B test on our
advertising platform validates the superiority of AdaptiveCTR in
online environments. AdaptiveCTR has become a major model for
multiple-domain Ad traffic serving in our system.
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