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Abstract—Logs are widely used in system management for dependability assurance because they are often the only data available
that record detailed system runtime behaviors in production. Because the size of logs is constantly increasing, developers (and
operators) intend to automate their analysis by applying data mining methods, therefore structured input data (e.g., matrices) are
required. This triggers a number of studies on log parsing that aims to transform free-text log messages into structured events.
However, due to the lack of open-source implementations of these log parsers and benchmarks for performance comparison,
developers are unlikely to be aware of the effectiveness of existing log parsers and their limitations when applying them into practice.
They must often reimplement or redesign one, which is time-consuming and redundant. In this paper, we first present a
characterization study of the current state of the art log parsers and evaluate their efficacy on five real-world datasets with over ten
million log messages. We determine that, although the overall accuracy of these parsers is high, they are not robust across all
datasets. When logs grow to a large scale (e.g., 200 million log messages), which is common in practice, these parsers are not efficient
enough to handle such data on a single computer. To address the above limitations, we design and implement a parallel log parser
(namely POP) on top of Spark, a large-scale data processing platform. Comprehensive experiments have been conducted to evaluate
POP on both synthetic and real-world datasets. The evaluation results demonstrate the capability of POP in terms of accuracy,
efficiency, and effectiveness on subsequent log mining tasks.

Index Terms—System Management, Log Parsing, Log Analysis, Parallel Computing, Clustering.

F

1 INTRODUCTION

Large-scale distributed systems are becoming the core
components of the IT industry, supporting daily use

software of various types, including online banking, e-
commerce, and instant messaging. In contrast to traditional
standalone systems, most of such distributed systems run
on a 24 × 7 basis to serve millions of users globally. Any
non-trivial downtime of such systems can lead to significant
revenue loss [1], [2], [3], and this thus highlights the need to
ensure system dependability.

System logs are widely utilized by developers (and
operators) to ensure system dependability, because they are
often the only data available that record detailed system
runtime information in production environment. In general,
logs are unstructured text generated by logging statements
(e.g., printf(), Console.Writeline()) in system source code. Logs
contain various forms system runtime information, which
enables developers to monitor the runtime behaviors of their
systems and to further assure system dependability.

With the prevalence of data mining, the traditional
method of log analysis, which largely relies on manual
inspection and is labor-intensive and error-prone, has been
complemented by automated log analysis techniques. Typ-
ical examples of log analysis techniques on dependability
assurance include anomaly detection [4], [5], program ver-
ification [6], [7], problem diagnosis [8], [9], and security
assurance [10], [11]. Most of these log analysis techniques
comprise three steps: log parsing, matrix generation, and
log mining (Fig. 1). The performance of log parsing plays
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an important role in various log analysis frameworks in
terms of both accuracy and efficiency. The log mining step
usually accepts structured data (e.g., a matrix) as input
and reports mining results to developers. However, raw
log messages are usually unstructured because they are
natural language designed by developers. Typically, a raw
log message, as illustrated in the following example, records
a specific system event with a set of fields: timestamp,
verbosity level, and raw message content.

2008-11-09 20:46:55,556 INFO dfs.DataNode$PacketResp
onder: Received block blk_3587508140051953248 of siz
e 67108864 from /10.251.42.84

Log parsing is usually the first step of automoated log
analysis, whereby raw log messages can be transformed
into a sequence of structured events. A raw log mes-
sage, as illustrated in the example, consists of two parts,
namely a constant part and a variable part. The constant
part constitutes the fixed plain text and represents the
corresponding event type, which remains the same for every
event occurrence. The variable part records the runtime
information, such as the values of states and parameters
(e.g., the block ID: blk -1608999687919862906), which may
vary among different event occurrences. The goal of log
parsing is to automatically separate the constant part and
variable part of a raw log message (also known as log de-
parametrization), and to further match each log message
with a specific event type (usually denoted by its constant
part). In the example, the event type can be denoted as
“Received block * of size * from *”, where the variable part
is identified and masked using asterisks.

Traditional log parsing approahes rely heavily on man-
ually customized regular expressions to extract the specific
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Fig. 1: Overview of Log Analysis

log events (e.g., SEC [12]). However, this method becomes
inefficient and error-prone for modern systems for the
following reasons. First, the volume of log grows rapidly;
for example, it grows at a rate of approximately 50 GB/h
(120∼200 million lines) [13]. Manually constructing regular
expressions from such a large number of logs is prohibitive.
Furthermore, modern systems often integrate open-source
software components written by hundreds of developers
[4]. Thus, the developers who maintain the systems are
usually unaware of the original logging purpose, which
increases the difficulty of the manual method. This problem
is compounded by the fact that the log printing statements
in modern systems update frequently (e.g., hundreds of
new logging statements every month [14]); consequently,
developers must regularly review the updated log printing
statements of various system components for the mainte-
nance of regular expressions.

Recent studies have proposed a number of automated
log parsing methods, including SLCT [15], IPLoM [16], LKE
[5], LogSig [17]. Despite the importance of log parsing, we
find a lack of systematic evaluations on the accuracy and
efficiency of the automated log parsing methods available.
The effectiveness of the methods on subsequent log mining
tasks is also unclear. Additionally, there are no other ready-
to-use tool implementations of these log parsers (except
for SLCT [15], which was released more than 10 years
ago). In this context, practitioners and researchers must
implement log parsers by themselves when performing log
mining tasks (e.g., [6], [9]), which is a time-consuming and
redundant effort.

To fill the significant gap, in this paper, we conduct a
comprehensive evaluation of four representative log parsers
and then present a parallel log parser that achieves state-of-
the-art performance in accuracy and efficiency.

More specifically, we study SLCT [15], IPLoM [16], LKE
[5], and LogSig [17], which are widely used log parsers
in log analysis. We do not consider source code-based log
parsing [4], because, in many cases, the source code is
inaccessible (e.g., in third party libraries). By using five real-
world log datasets with over 10 million raw log messages,
we evaluate the log parsers’ performance in terms of ac-
curacy (i.e., F-measure [18], [19]), efficiency (i.e., execution
time), and effectiveness on a log mining task (i.e., anomaly
detection [4] evaluated by detected anomaly and false
alarm). We determine that, although the overall accuracy
of these log parsing methods is high, they are not robust
across all datasets. When logs grow to a large scale (e.g.,
200 million log messages), these parsers fail to complete in
reasonable time (e.g., one hour), and most cannot handle
such data on a single computer. We also find that parameter
tuning costs considerable time for these methods, because

parameters tuned on a sample dataset of small size cannot
be directly employed on a large dataset.

To address these problems, we propose a parallel log
parsing method, called POP, that can accurately and effi-
ciently parse large-scale log data. Similar to previous papers
[5], [15], [16], [17], POP assumes the input is single-line logs,
which is the common case in practice. To improve accuracy
in log parsing, we employ iterative partitioning rules for
candidate event generation and hierarchical clustering for
event type refinement. To improve efficiency in processing
large-scale data, we design POP with linear time complexity
in terms of log size, and we further parallelize its computa-
tion on top of Spark, a large-scale data processing platform.

We evaluate POP on both real-world datasets and large-
scale synthetic datasets with 200 million lines of raw log
messages. The evaluation results show the capability of POP
in achieving accuracy and efficiency. Specifically, POP can
parse all the real-world datasets with the highest accuracy
compared with the existing methods. Moreover, POP can
parse our synthetic HDFS (Hadoop Distributed File System)
dataset in 7 min, whereas SLCT requires 30 min, and
IPLoM, LKE, and LogSig fail to terminate in reasonable
time. Moreover, parameter tuning is easy in POP because
the parameters tuned on small sample datasets can be
directly applied to large datasets while preserving high
parsing accuracy.

• This is the first work that systematically evaluates
the performance of current log parsers in terms of
accuracy, efficiency, and effectiveness on subsequent
log mining tasks.

• It presents the design and implementation of a
parallel log parsing method (POP), which can parse
large-scale log data accurately and efficiently.

• The source code of both POP and the studied log
parsers have been publicly released [20], allowing for
easy use by practitioners and researchers for future
study.

Extended from its preliminary conference version [21],
the paper makes several major enhancements: the design
and implementation of a parallel log parsing method (POP);
the evaluation of POP’s performance in terms of accuracy,
efficiency, and effectiveness on subsequent log mining tasks;
efficiency evaluation of the state-of-the-art parsers on large-
scale synthetic datasets; discussion highlighting the usage
of POP in practice; and code release of POP for reproducible
research.

The remainder of this paper is organized as follows.
Section 2 presents the overview of log parsing, and Section 3
introduces our parallel log parsing method. The evaluation
results are reported in Section 4. We discuss limitations and
practical usage of POP in Section 5. We then introduce the
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2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxt4/
_temporary/_task_200811101024_0010_m_000011_0/part-
00011.blk_904791815409399662
2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010
2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010
2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662 
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864 
from /10.250.18.114
2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662 
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864 
from /10.251.43.210

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated: 
10.251.43.210:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated: 
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662
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Fig. 2: Overview of Log Parsing

related work in Section 6, and finally conclude this paper in
Section 7.

2 OVERVIEW OF LOG PARSING

The goal of log parsing is to transform raw log messages
into a sequence of structured events, which facilitates sub-
sequent matrix generation and log mining. Fig. 2 illustrates
an overview of log parsing process. As shown in the figure,
there are ten HDFS raw log messages collected on the
Amazon EC2 platform [4]. In real-world cases, a system can
generate millions of such log messages per hour. The output
of log parsing is a list of log events and structured logs.

Log events are the extracted templates of log messages,
for example, “Event 2: Receiving block * src: * dest: *”. In
practice, typically we employ POP on historical logs to
generate log events, which can be used to parse the logs
in system runtime. Struture logs are a sequence of events
with field of interest (e.g., timestamp). The structure logs
can be easily transformed to a matrix, or directly processed
by the subsequent log mining tasks (e.g., anomaly detection
[4], deployment verfication [7]).

Log parsing has been widely studied in recent years.
Among all the log parsers, we choose four representative
ones (SLCT [15], IPLoM [22], LKE [5], LogSig [17]), which
are in widespread use for log mining tasks. Details of these
parsers are provided in our supplementary report [23].

3 PARALLEL LOG PARSING (POP)
From the implementation and systematic study of log
parsers introduced in Section 2, we observe that a good log
parsing method should fulfill the following requirements:
(1) Accuracy. The parsing accuracy (i.e., F-measure) should
be high. (2) Efficiency. The running time of a log parser
should be as short as possible. (3) Robustness. A log parsing

[18:03:38] chrome.exe, 4381 bytes sent, 6044 bytes received, lifetime 09:14
[16:49:08] chrome.exe, 464 bytes sent, 1101 bytes received, lifetime <1 sec

Fig. 3: Proxifier Log Samples

method needs to be consistently accurate and efficient on
logs from different systems.

Thus, we design a parallel log parsing method, namely
POP, to fulfill the above requirements. POP preprocesses
logs with simple domain knowledge (step 1). It then hi-
erarchically partitions the logs into different groups based
on two heuristic rules (step 2 and 3). For each group,
the constant parts are extracted to construct the log event
(step 4). Finally, POP merges similar groups according to
the result of hierarchical clustering on log events (step 5).
We design POP on top of Spark [24], [25], a large-scale
data processing platform using the parallelization power of
computer clusters, and all computation-intensive parts of
POP are designed to be highly parallelizable.

3.1 Step 1: Preprocess by Domain Knowledge
According to our study on the existing log parsers, simple
preprocessing using domain knowledge can improve pars-
ing accuracy, so raw logs are preprocessed in this step. POP
provides two preprocessing functions. First, POP prunes
variable parts according to simple regular expression rules
provided by developers, for example, removing block ID
in Fig. 2 by “blk [0-9]+”. For all datasets used in our
experiment, at most two rules are defined on a dataset.
This function can delete variable parts that can be easily
identified with domain knowledge. Second, POP allows
developers to manually specify log events based on regular
expression rules. This is useful because developers intend
to put logs with certain properties into the same partition
in some cases. For example, Fig. 3 contains two log mes-
sages from Proxifier dataset. The two logs will be put into
the same partition by most of the log parsing methods.
However, developers may want to count the session with
less than 1 second lifetime separately. In this case, POP
can easily extract the corresponding logs based on the
regular expression “.*<1 sec.*”. Note that the simple regular
expressions used in this step require much less human effort
than those complex ones used by traditional methods to
match the whole log messages.

3.2 Step 2: Partition by Log Message Length
In this step, POP partitions the remaining logs into nonover-
lapping groups of logs. POP puts logs with the same log
message length into the same group. By log message length,
we mean the number of tokens in a log message. This
heuristic, which is also used by IPLoM [22], is based on
the assumption that logs with the same log event will likely
have the same log message length. For example, log event
“Verification succeeded for *” from HDFS dataset contains
4 tokens. It is intuitive that logs having this log event
share the same log message length, such as “Verification
succeeded for blk 1” and “Verification succeeded for blk 2”.
This heuristic rule is considered coarse-grained, so it is
possible that log messages in the same group have different
log events. “Serve block * to *” and “Deleting block * file
*” will be put into the same group in step 2, because they
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both contain 5 tokens. This issue is addressed by a fine-
grained heuristic partition rule described in step 3. Besides,
it is possible that one or more variable parts in the log event
contain variable length, which invalidates the assumption
of step 2. This will be addressed by hierarchical clustering
in step 5.

3.3 Step 3: Recursively Partition by Token Position

In step 3, each group is recursively partitioned into sub-
groups, where each subgroup contains logs with the same
log event (i.e., same constant parts). This step assumes that
if the logs in a group having the same log event, the tokens
in some token positions should be the same. For example, if
all the logs in a group have log event “Open file *”, then
the tokens in the first token position of all logs should
be “Open”. We define complete token position to guide the
partitioning process.

Notations: Given a group containing logs with log
message length n, there are n token positions. All tokens in
token position i form a token set TSi, which is a collection
of distinct tokens. The cardinality of TSi is defined as |TSi|.
A token position is complete if and only if |TSi| = 1, and it is
defined as a complete token position. Otherwise, it is defined
as an incomplete token position.

Our heuristic rule is to recursively partition each group
until all the resulting groups have enough complete token
positions. To evaluate whether complete token positions are
enough, we define Group Goodness (GG) as following.

GG =
#CompleteTokenPositions

n
. (1)

A group is a complete group if GG > GS, where GS
stands for Group Support, a threshold assigned by develop-
ers. Otherwise, the group is an incomplete group. In this
step, POP recursively partitions the groups if the current
group is not a complete group.

Algorithm 1 provides the pseudo code of step 3. POP
regards all groups from step 2 as incomplete groups (line
1). Incomplete groups are recursively partitioned by POP
to generate a list of complete groups (lines 4∼24). For each
incomplete group, if it already contains enough complete
token positions, it is moved to the complete group list (lines
6∼8). Otherwise, POP finds the split token position, which
is the token position with the lowest cardinality among all
incomplete token positions. Because of its lowest cardinality,
tokens in the split token position are most likely to be
constants. Then POP calculates Absolute Threshold (AT) and
Relative Threshold (RT) (line 11∼12). A token position with
smaller AT and RT is more likely to contain constants. For
example, in Fig. 4, column (i.e. token position) 1 and 2
have smaller AT (2) and RT (0.5), so they are more likely
to contain constants compared with column 3, whose AT

Column AT RT 

1 2 0.5 

2 2 0.5 

3 4 1 

1. Send 
2. Receive 
3. Receive 
4. Send 

to 
from 
from 

to 

10.10.35.01 
10.10.35.02 
10.10.35.03 
10.10.35.04 

An Incomplete Group 

     Calculate 
     AT, RT 

Fig. 4: An Example of AT, RT Calculation

Algorithm 1 POP Step 3: Recursively partition each group
to complete groups.

Input: a list of log groups from step 2: logGroupL; and
algorithm parameters: GS, splitRel, splitAbs

Output: a list of complete groups: completeL
1: incompleteL← logGroupL
2: completeL← List( ) . Initialize with empty list
3: curGroup← first group in incompleteL
4: repeat
5: Set n← |curGroup|
6: if ISCOMPLETE(curGroup,GS)= true then
7: Add curGroup to completeL
8: Remove curGroup from incompleteL
9: else

10: Find the split token position s
11: Compute AT ← |TSs|
12: Compute RT ← |TSs|/n
13: if AT > splitAbs and RT > splitRel then
14: Add curGroup to completeL
15: Remove curGroup from incompleteL
16: else
17: Partition curGroup to several resultGroup based

on the token value in split token position
18: for all resultGroup do
19: if ISCOMPLETE(resultGroup,GS)= true then
20: Add resultGroup to completeL
21: else
22: Add resultGroup to incompleteL

23: curGroup← next group in incompleteL
24: until incompleteL is empty

25: function ISCOMPLETE(group, gs)
26: Compute token sets for token positions in group
27: Compute GG . by Equation 1
28: if GG > gs then
29: return true
30: else
31: return false

is 4 and RT is 1. Note that we only need to calculate AT
and RT for the split token position. We demonstrate AT
and RT for all the columns in Fig. 4 for better explanation.
Thus, POP regards the tokens as variables only when both
AT and RT are larger than manually defined thresholds
(i.e., splitAbs and splitRel respectively). If all tokens in the
split token position are variables, POP moves the current
group to the complete group list, because it could not be
further partitioned (line 13∼15). Otherwise, POP partitions
the current group into |TSs| resulting groups based on the
token value in the split token position (line 17). Among all
the result groups, the complete groups are added into the
complete group list, while the incomplete ones are added
to the incomplete group list for further partitioning (line
18∼22). Finally, the complete group list is returned, where
logs in each group share the same log event type.

3.4 Step 4: Generate Log Events
At this point, the logs have been partitioned into nonover-
lapping groups by two heuristic rules. In this step, POP
scans all the logs in each group and generates the cor-
responding log event, which is a line of text containing
constant parts and variable parts. The constant parts are
represented by tokens and the variable parts are represented
by wildcards. To decide whether a token is a constant or
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a variable, POP counts the number of distinct tokens (i.e.,
|TS|) in the corresponding token position. If the number
of distinct tokens in a token position is one, the token is
constant and will be outputted to the corresponding token
position in a log event. Otherwise, a wildcard is outputted.

3.5 Step 5: Merge Groups by Log Event
To this end, logs have been partitioned into nonoverlapping
complete groups, and each log message is matched with a
log event. Most of the groups contain logs that share the
same log event. However, some groups may be over-parsed
because of suboptimal parameter setting, which causes false
negatives. Besides, it is possible that some variable parts
in a log event have variable length, which invalidates the
assumption in step 2. This also brings false negatives.

To address over-parsing and further improve parsing
accuracy, in this step, POP employs hierarchical clustering
[26] to cluster similar groups based on their log events. The
groups in the same cluster will be merged, and a new log
event will be generated by calculating the Longest Common
Subsequence (LCS) [27] of the original log events. This step
is based on the assumption that if logs from different groups
have the same log event type, the generated log event
texts from these groups should be similar. POP calculates
Manhattan distance [28] between two log event text to
evaluate their similarity. Specifically,

d(a, b) =
N∑
i=1

|ai − bi|, (2)

where a and b are two log events, N is the number of
all constant token values in a and b, and ai means the
occurrence number of the i-th constant token in a. We use
Manhattan distance because it assigns equal weight to each
dimension (i.e., constant). This aligns with our observation
that all constants are of equal importance in log parsing.
Besides, Manhattan distance is intuitive, which makes pa-
rameter tuning easier. POP employs complete linkage [29]
to evaluate the distance between two clusters, because the
resulted clusters will be compact, which avoids clustering
dissimilar groups together. The only parameter in this step
is maxDistance, which is the maximum distance allowed
when the clustering algorithm attempts to combine two
clusters. The algorithm stops when the minimum distance
among all cluster pairs is larger than maxDistance.

3.6 Implementation
To make POP efficient in large-scale log analysis, we build it
on top of Spark [24], [25], a large-scale data processing plat-
form. Specifically, Spark runs iterative analysis programs
with orders of magnitude faster than Hadoop Mapreduce
[30]. The core abstraction in Spark is Resilient Distributed
Datasets (RDDs), which are fault-tolerant and parallel
data structures representing datasets. Users can manip-
ulate RDDs with a rich set of Spark operations called
transformations (e.g., map, filter) and actions (e.g, reduce,
aggregate). Calling transformations on an RDD generates
a new RDD, while calling actions on an RDD reports cal-
culation result to users. Spark employs lazy evaluation, so
that transformations on RDDs will not be executed until an
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Fig. 5: Overview of POP Implementation

action is called. At that time, all preceding transformations
are executed to generate the RDD, where the action is then
evaluated. We build POP on top of Spark because it is
good at parallelizing identical computation logic on each
element of a dataset, and it directly uses the output of one
step in memory as the input to another. In our case, an
RDD can represent a log dataset, where each element is a
log message. POP can be parallelized by transformations
and actions, because each POP step requires computation-
intensive tasks that cast identical computation logic to every
log message. To parallelize these tasks, we invoke Spark
operations with specially designed functions describing the
computation logic. In the following, we will introduce the
Spark operations we applied for the five POP steps.

The implementation of POP on Spark is illustrated in
Fig. 5. The five rounded rectangles at the bottom represent
the five steps of POP, where the numbered arrows represent
the interactions between the main program and the Spark
cluster. The main program is running in Spark driver,
which is responsible for allocating Spark tasks to workers
in the Spark cluster. For a POP Spark application, in step 1,
we use textF ile to load the log dataset from a distributed
file system (e.g., HDFS) to Spark cluster as an RDD (arrow
1). Then, we use map to preprocess all log messages with
a function as input describing the preprocessing logic on
single log message (arrow 2). After preprocessing, we cache
the preprocessed log messages in memory and return an
RDD as the reference (arrow 3). In step 2, we use aggregate
to calculate all possible log message length values (arrow 4)
and return them as a list (arrow 5). Then for each value
in the list, we use filter to extract log messages with the
same log message length (arrow 6), which is returned as an
RDD (arrow 7). Now we have a list of RDDs. In step 3,
for each RDD, we employ aggregate to form the token sets
for all token positions (arrow 8∼9) as described in Section
3.3. Based on the token sets and pre-defined thresholds,
the driver program decides whether current RDD could be
further partitioned or not. If yes, we use filter to generate
new RDDs and add them into the RDD list (arrow 10∼11).
Otherwise, we remove it from the list and pass the RDD
to step 4. In step 4, we use reduce to generate log events
for all RDDs (arrow 12∼13). When all log events have
been extracted, POP runs hierarchical clustering on them
in main program. We use union to merge RDDs based on
the clustering result (arrow 14). Finally, merged RDDs are
outputted to the distributed file system by saveAsTextF ile
(arrow 15).
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The implementation of this specialized POP is non-
trivial. First, Spark provides more than 80 operations and
this number is increasing quickly due to its active com-
munity. We need to select the most suitable operations to
avoid unnecessary performance degradation. For example,
if we use aggregateByKey in step 2 and step 3 instead of
aggregate, the running time will be one order of magnitude
longer. Second, we need to design tailored functions as
input for Spark operations, such as aggregate and reduce.
Though we use aggregate in both step 2 and step 3, different
functions have been designed. The source code of POP has
been release [20] for reuse. Note that the existing log parser
can also be parallelized, but they require non-trivial efforts.

4 EVALUATION

This section presents our evaluation methodology first.
Then we evaluate the performance of log parsers in terms
of their accuracy, efficiency, and effectiveness on subsequent
log mining tasks in different sub-sections. For each of these
three evaluation items, we first explain the evaluation study
on representative log parsers and their implication; then we
analyze the evaluation results of POP.

4.1 Study Methodology
Log Datasets. We used five real-world log datasets, includ-
ing supercomputer logs (BGL and HPC), distributed sys-
tem logs (HDFS and Zookeeper), and standalone software
logs (Proxifier). Table 1 provides the basic information of
these datasets. Log Size column describes the number of
raw log messages, while #Events column is the number
of log event types. Since companies are often reluctant
to release their system logs due to confidentiality, logs
are scarce data for research. Among the five real-world
log datasets in Table 1, three log datasets are obtained
from their authors. Specifically, BGL is an open dataset of
logs collected from a BlueGene/L supercomputer system at
Lawrence Livermore National Labs (LLNL), with 131,072
processors and 32,768GB memory [31]. HPC is also an
open dataset with logs collected from a high performance
cluster at Los Alamos National Laboratory, which has 49
nodes with 6,152 cores and 128GB memory per node [32].
HDFS logs are collected in [4] by engaging a 203-node
cluster on Amazon EC2 platform. To enrich the log data
for evaluation purpose, we further collected two datasets:
one from a desktop software Proxifier, and the other from
a Zookeeper installation on a 32-node cluster in our lab.
In particular, the HDFS logs from [4] have well-established
anomaly labels, each of which indicates whether a block has
anomaly operations. Specifically, the dataset with over 10
million log messages records operations on 575,061 blocks,
among which 16,838 are anomalies.

Log Parser Implementation. Among the four studied log
parsing methods, we only find an open-source implementa-
tion on SLCT in C language. To enable our evaluations, we
have implemented the other three log parsing methods in
Python and also wrapped up SLCT as a Python package.
Currently, all our implementations have been open-source
as a toolkit on Github [20].

Evaluation Metric. We use F-measure [18], [19], a
commonly-used evaluation metric for clustering algorithms,

TABLE 1: Summary of Our System Log Datasets

System Log Size Length #Events Description

BGL 4,685,142 10∼102 376 BlueGene/L
Supercomputer

HPC 433,490 6∼104 105

High
Performance
Cluster (Los
Alamos)

HDFS 11,175,629 8∼29 29
Hadoop
Distributed
File System

Zookeeper 74,380 8∼27 80
Distributed
System
Coordinator

Proxifier 10,108 10∼27 8 Proxy Client

to evaluate the parsing accuracy of log parsing methods.
The definition of parsing accuracy is as the following.

Parsing Accuracy =
2 ∗ Precision ∗Recall
Precision+Recall

, (3)

where Precision and Recall are defined as follows:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
, (4)

where a true positive (TP ) decision assigns two log mes-
sages with the same log event to the same log group; a
false positive (FP ) decision assigns two log messages with
different log events to the same log group; and a false
negative (FN ) decision assigns two log messages with the
same log event to different log groups. If the logs are under-
partitioning, the precision will be low because it leads to
more false positives. If a log parsing method over-partitions
the logs, its recall will decrease because it has more false
negatives. Thus, we use F-measure, which is the harmonic
mean of precision and recall, to represent parsing accuracy.
To obtain the ground truth for the parsing accuracy evalu-
ation, we split the raw log messages into different groups
with the help of manually-customized regular expressions.

Experimental Setting. The experiments of systematic
evaluation on existing log parsers are run on a Linux server
with Intel Xeon E5-2670v2 CPU and 128GB DDR3 1600
RAM, running 64-bit Ubuntu 14.04.2 with Linux kernel
3.16.0. Experiments of POP are run on Spark 1.6.0 with
YARN as the cluster controller on 32 physical machines. The
cluster has 4TB memory and 668 executors in total. All 32
physical machines are inter-connected with 10Gbps network
switch. In our experiment, unless otherwise specified, we
use 16 executors, each of which has 25G memory and 5
executor cores. We set Kryo as the Spark serializer because
it is significantly faster and more compact than the default
one [33]. The parameter setting follows the experience of
Cloudera [34], a leading software company that provides
big data software, services and supports. To avoid bias,
each experiment is run 10 times and the averaged result
is reported.

4.2 Accuracy of Log Parsing Methods
In this section, we first evaluate the accuracy of all five log
parsing methods. Then we study whether these log parsers
can consistently obtain high accuracy on large datasets if
parameters tuned on small datasets are employed.
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4.2.1 Parsing Accuracy
In this section, we first evaluate the parsing accuracy of
existing parsers with and without preprocessing. Then the
parsing accuracy of POP is explained.

To study the accuracy of log parsing methods, we use
them to parse real-world logs. Similar to the existing work
[17], we randomly sample 2k log messages from each
dataset in our evaluation, LKE and LogSig cannot parse
large log datasets in reasonable time (e.g., LogSig requires 1
day to parse the entire BGL data). For each experiment, we
use the same 2k log messages for all 10 executions. These
2k datasets have been released on our project website [20].
The results are reported in Table 2 (i.e., the first number in
each cell). As shown in the table, the accuracy of existing
log parsers is larger than 0.8 in many cases. Besides, the
overall accuracy on HDFS, Zookeeper and Proxifier datasets
is higher than that on BGL and HPC. We find that this
is mainly because BGL and HPC logs involve much more
event types, and they have more various log length range
compared with HDFS, Zookeeper and Proxifier.

LKE has an accuracy drop on HPC dataset. This is
because almost all the log messages are grouped into a
single cluster in the first step of LKE, which aggressively
groups two clusters if any two log messages between them
have a distance smaller than a specified threshold. BGL
contains a lot of log messages with “generating core.*” as
log event, such as “generating core.1” and “generating
core.2”. LogSig tends to separate these two log messages
into different clusters, because 50% of them are different
(core.1 and core.2). This causes LogSig’s low accuracy on
BGL. Particularly, IPLoM employs heuristic rules based on
the characteristics of log messages, while other log pasers
rely on typical data mining models. However, we find that
IPLoM enjoys the superior overall accuracy, which implies
the importance of studying the unique characteristics of log
data.

Instead of directly parsing the raw log messages, de-
velopers may conduct preprocessing basd on their do-
main knowledge. To figure out the effectiveness of pre-
processing on log parsing, we study the impact of pre-
processing on parsing accuracy. Specifically, obvious nu-
merical parameters in log messages (i.e., IP addresses in
HPC&Zookeeper&HDFS, core IDs in BGL, and block IDs
in HDFS) are removed. Preprocessing is mentioned in LKE
and LogSig, but its effectiveness has not been studied.

In Table 2, the second number in each cell represents
the accuracy of log parsing methods on preprocessed log
data. In most cases, accuracy of parsing is improved. Pre-
processing greatly increases the accuracy SLCT on BGL,
LKE on HDFS, and LogSig on BGL (in bold). However,
preprocessing could not improve the accuracy of IPLoM. It
even slightly reduces IPLoM’s accuracy on Zookeeper. This
is mainly because IPLoM considers preprocessing internally
in its four-step process. Unnecessary preprocessing can lead
to over-partitioning.

After preprocessing, most of the methods have high
overall parsing accuracy (larger than 0.90 in many cases).
But none of them consistently lead to very accurate pars-
ing results on all datasets. Specifically, SLCT obtains 0.86
accuracy on HPC; IPLoM has 0.64 accuracy on HPC; LKE
encounters 0.17 accuracy on HPC, 0.70 accuracy on BGL,

TABLE 2: Parsing Accuracy of Log Parsing Methods
(Raw/Preprocessed)

BGL HPC HDFS Zookeeper Proxifier
SLCT 0.61/0.94 0.81/0.86 0.86/0.93 0.92/0.92 0.89/-
IPLoM 0.99/0.99 0.64/0.64 0.99/1.00 0.94/0.90 0.90/-
LKE 0.67/0.70 0.17/0.17 0.57/0.96 0.78/0.82 0.81/-

LogSig 0.26/0.98 0.77/0.87 0.91/0.93 0.96/0.99 0.84/-
POP 0.99 0.95 1.00 0.99 1.00

and 0.81 accuracy on Proxifier; LogSig obtains 0.87 accuracy
on HPC and 0.84 accuracy on Proxifier.

Findings. Simple preprocessing using domain knowledge
(e.g., removal of IP address) improves log parsing accuracy.
With preprocessing, existing log parsers can achieve high
overall accuracy. But none of them consistently generates
accurate parsing results on all datasets.

To evaluate the accuracy of POP, we employ it to parse
the same 2k datasets. For dataset BGL, HPC, HDFS and
Zookeeper, we set GS to 0.6, splitAbs to 10, splitRel to 0.1,
maxDistance to 0. Parameter tuning is intuitive because
all these parameters have physical meanings. Developer
can easily find the suitable parameter setting with basic
experience on datasets. For dataset Proxifier, we set GS
to 0.3, splitAbs to 5, splitRel to 0.1, maxDistance to 10.
The parameter setting of Proxifier is different because it
contains much fewer log events (i.e., 8 as described in Table
1) compared with others. Besides, we extract log messages
containing text “<1 sec” in step 1 of POP, which simulates
the practical condition described in Section 3.1.

The results are presented in the last line of Table 2.
We observe that POP delivers the best parsing accuracy
for all these datasets. For datasets that has relatively few
log events (e.g., HDFS and Proxifier), its parsing accuracy
is 1.00, which means all the logs can be parsed correctly.
For datasets that has relatively more log events, POP still
delivers very high parsing accuracy (0.95 for HPC). POP
has the best parsing accuracy because of three reasons. First,
POP will recursively partition each log group into several
groups until they become complete groups. Compared with
other log parsers based on heuristic rules (e.g., SLCT),
POP provides more fine-grained partitioning. Second, POP
merges similar log groups based on the extracted log
event, which amends over-partitioning. Third, POP allows
developers to manually extract logs with certain properties,
which reduces noise for the partitioning process.

4.2.2 Parameter Tuning
The accuracy of log parsers is affected by parameters. For
large-scale log data, it is difficult to select the most suitable
parameters by trying different values, because each run
will cause a lot of time. Typically, developers will tune the
parameters on a small sample dataset and directly apply
them on large-scale data.

To evaluate the feasibility of this approach, we sampled
25 datasets from the original real-world datasets. Table
3 shows the number of raw log messages in these 25
sample datasets, where each row presents 5 sample datasets
generated from a real-world dataset.
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TABLE 3: Log Size of Sample Datasets

BGL 400 4k 40k 400k 4m
HPC 600 3k 15k 75k 375k

HDFS 1k 10k 100k 1m 10m
Zookeeper 4k 8k 16k 32k 64k
Proxifier 600 1200 2400 4800 9600

TABLE 4: Parsing Accuracy of POP on Sample Datasets in
Table 3 with parameters tuned on 2k datasets

BGL 0.98 0.99 0.99 0.89 0.89
HPC 0.95 0.97 0.96 0.96 0.97

HDFS 1.00 0.99 0.99 0.99 0.99
Zookeeper 0.99 0.99 0.99 0.99 0.99
Proxifier 1.00 1.00 1.00 0.99 0.99

We apply parameters tuned on 2k datasets. In Fig. 6,
we evaluate the accuracy of the log parsers on the datasets
presented in Table 3 employing these parameters. The
results show that IPLoM performs consistently in most cases
except a 0.15 drop on Proxifier. SLCT varies a lot on HPC
and Proxifier. The accuracy of LKE is volatile in Zookeeper
because of its aggressive clustering strategy. LogSig obtains
consistent accuracy on datasets with limited types of events,
but its accuracy fluctuates severely on datasets with many
log events (i.e., BGL and HPC).

Findings. Parameter tuning is time-consuming for exist-
ing log parsing methods except IPLoM, because they could
not directly use parameters tuned on small sampled data for
large datasets.

The experimental results of POP are shown in Table 4
and Fig. 6. We observe that the accuracy of POP is very
consistent for all datasets. The accuracy on Zookeeper is
0.99 for all 5 sampling levels, which indicates the parameters
tuned on 2k sample dataset lead to nearly the same parsing
results. For HPC, HDFS and Proxifier, the fluctuation of
the accuracy is at most 0.02, while the accuracy is at least
0.95. For BGL, the accuracy has a 0.1 drop for the last two
sampling levels. But POP can still obtain 0.89 accuracy in
these two levels, while 0.1 is not a large drop compared
with existing parsers in Fig. 6. Compared with existing
methods, POP is the only parser that obtains high accuracy
consistently on all datasets using the parameters tuned on
small sampled data.

4.3 Efficiency of Log Parsing Methods

In this section, we evaluate the efficiency of all five log pars-
ing methods. Specifically, we first measure the running time
of these log parsers on 25 sampled datasets with varying
number of log messages (i.e., log size) in Table 3. Second, we
evaluate the running time of these log parsers on synthetic
datasets containing over 200 million log messages, which is
comparable to large-scale modern production systems [13].

Note that running time in this paper means the time
used to run log parsers (i.e., training time). In addition to
training time, we measure the efficiency for parsing a new
log message, which is 173µs for BGL, 108µs for HPC, 36µs
for HDFS, 29µs for Zookeeper, and 20µs for Proxifier. The
matching process relies on regular expressions, thus its time

depends on the number of log events and their lengths. The
matching time is similar for different log parsers.

4.3.1 Running Time on Real-World Datasets
In Fig. 7, we evaluate the running time of the log parsing
methods on all datasets by varying the number of raw
log messages (i.e., log size). Notice that as the number of
raw log messages increases, the number of events becomes
larger as well (e.g., 60 events in BGL400 while 206 events in
BGL40k). Fig. 7 is in logarithmic scale, so we can observe the
time complexity of these log parsers from the slope of the
lines. As show in the figure, the running time of SLCT and
IPLoM scale linearly with the number of log messages. They
both could parse 10 million HDFS log messages within five
minutes. However, as the slopes show, their running time
increases fast as the log size becomes larger, because they
are limited by the computing power of a single computer.
The fast increasing speed can lead to inefficient parsing on
production level log data (e.g., 200 million log messages).
The running time of LogSig also scales linearly with the
number of log messages. However, it requires much running
time (e.g, 2+ hours for 10m HDFS log messages), because
its clustering iterations are computation-intensive and its
word pair generation step is time-consuming. The time
complexity of LKE is O(n2), where n is the number of raw
log messages, which makes it unable to handle some real-
world log data, such as BGL4m and HDFS10m. Running
time of some LKE experiments is not plotted because LKE
could not terminate in reasonable time (i.e., days or even
weeks).

Findings. Clustering-based log parsers require much run-
ning time on real-world datasets. Heuristic rule-based log
parsers are more efficient, but their running time increases
fast as the log size becomes larger. These imply the demand
for parallelization.

The time complexity of POP is O(n), where n is the
number of raw log messages. In step 1, step 2 and step 4,
POP traverses all log messages once so the time complexity
for these steps are all O(n). In step 3, POP may scan some
log messages more than once due to recursion. However, in
the case of log parsing, the recursion depth can be regarded
as a constant because it will not increase as the number of
log messages, which remains small in all our datasets. Thus,
the time complexity of step 3 is also O(n). Finally, the time
complexity of step 5 is O(m2 logm), where m is the number
of log events. We do not consider it in the time complexity
of POP, because m is far less than n. So the time complexity
of POP is O(n+ n+ n+ n+m2 logm) = O(n).

The “SinglePOP” lines represent the running time of the
nonparallel implementation of POP on different datasets.
We can observe that the running time of SinglePOP is even
shorter than the parallel implementation of POP. Because
the nonparallel implementation of POP does not require
any data transportation between nodes, which is required
by parallel programs. Besides, the parallel implementation
needs to deploy the runtime environment (e.g., set up
the nodes that will be used) at the beginning, though
automatically, will cost some constant time.
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Fig. 6: Parsing Accuracy on Datasets in Different Size
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Fig. 7: Running Time of Log Parsing Methods on Datasets
in Different Size
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TABLE 5: Running Time of POP (Sec) on Sample Datasets in
Table 3

BGL 71.87 134.48 271.98 268.12 527.63
HPC 46.24 61.29 83.81 119.81 234.92

HDFS 19.82 19.17 29.14 41.03 100.58
Zookeeper 69.62 72.22 60.07 75.56 90.69
Proxifier 18.00 16.08 16.60 21.07 24.22

The experimental results of POP are presented in Table 5
and Fig. 7. Fig. 7 shows that POP has the slowest increasing
speed of running time as the log size becomes larger. Its
increasing speed is even much better (i.e., slower) than
linear parsers (i.e., SLCT, IPLoM, LogSig). For a few cases,
the running time of POP even decreases when the log size
becomes larger. This is mainly caused by two reasons. First,
a larger dataset could benefit more from parallelization than
a smaller one. Second, it is possible that a smaller dataset
requires deeper recursion in step 3 of POP, which increases
its running time. Compared with the existing methods, POP
enjoys the slowest running time increase because of its O(n)
time complexity and its parallelization mechanism. It can
parse a large amount of log messages very fast (e.g., 100
seconds for 10 million HDFS log messages). Although its
running time is slower than IPLoM and SLCT in some cases,
POP turns out to be more efficient for two reasons. First, as
we can observe from Fig. 7, the running time increase of
POP is the slowest, so POP will be faster than other log
parsers when log size is larger. For example, POP is faster
than IPLoM on 10m HDFS dataset. Second, the efficiency
of IPLoM and SLCT is limited by computing power or/and
memory of single computer, while POP is able to utilize
multiple computers.

4.3.2 Running Time on Large-Scale Synthetic Datasets
In this section, we evaluate the running time of log parsers
on very large synthetic datasets, which are randomly gen-
erated from BGL and HDFS. These two datasets are rep-
resentative because they include log datasets with a lot
and a few log events respectively. BGL has more than 300
log events, while HDFS has 29. The synthetic datasets are
generated from the real-world datasets. For example, to
generate a 200m synthetic dataset from HDFS dataset, we
randomly select a log message from the dataset each time,
and repeat this random selection process 200 million times.
Fig. 8 presents the experimental results in linear scale.

In this figure, a result is neglected if its running time
is larger than one hour, because we want to evaluate the
effectiveness of these log parsers in production environment
(e.g., 120∼200 million log messages per hour [13]). Thus,
experimental results of SLCT, IPLoM and POP are plotted,
while LKE and LogSig require more than one hour on
these datasets. The running time increase of IPLoM is the
fastest among the plotted three. It requires more than an
hour for two datasets generated from HDFS; therefore, they
are not plotted. Besides, IPLoM requires more than 16G
memory when the synthetic dataset contains 30m or more
log messages for both BGL and HDFS. Because IPLoM needs
to load the whole dataset into memory, and it creates extra
data of comparable size in runtime. SLCT is more efficient
than IPLoM, and it requires the least time on BGL datasets.
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Fig. 8: Running Time on Synthetic Datasets

SLCT only requires two passes across all log data, and it is
implemented in C instead of Python. However, its running
time increases fast as the log size becomes larger, because
SLCT is limited by the computing power of single computer.

Findings. Clustering-based log parsers cannot handle
large-scale log data. Heuristic rule-based log parsers are
efficient, but they are limited by the computing power
or/and memory of a single computer.

For POP, we use 64 executors on BGL datasets and 16
executors on HDFS datasets, each of which has 16G memory
and 5 executor cores. We use more executors on BGL
datasets because they require more recursive partitioning
in step 3. We set 16G memory because this is a typical
memory setting for a single computer. We observe that POP
has the slowest growth speed among all three methods.
Besides, POP requires the least running time for HDFS
datasets. Though SLCT requires less time for BGL datasets,
its running time increases faster than POP, which is shown
by their comparable results on 200m log message dataset
generated from BGL. Thus, POP is the most suitable log
parser for large-scale log analysis, given that the size of logs
will become even larger in the future.

4.4 Effectiveness of Log Parsing Methods on Log Min-
ing: A Case Study

Log mining tasks usually accept structured data (e.g., ma-
trix) as input and report mining results to developers,
as described in Fig. 1. If a log parser is inaccurate, the
generated structured logs will contain errors, which can
further ruin the input matrix of subsequent log mining
tasks. A log mining task with erroneous input tends to
report biased results. Thus, log parsing should be accurate
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TABLE 6: Anomaly Detection with Different Log Parsing
Methods (16,838 Anomalies)

Parsing Reported Detected False
Accuracy Anomaly Anomaly Alarm

SLCT 0.83 18,450 10,935 (64%) 7,515 (40%)
LogSig 0.87 11,091 10,678 (63%) 413 (3.7%)
IPLoM 0.99 10,998 10,720 (63%) 278 (2.5%)
POP 0.99 10,998 10,720 (63%) 278 (2.5%)

Ground truth 1.00 11,473 11,195 (66%) 278 (2.4%)

enough to ensure the high performance of subsequent log
mining tasks.

To evaluate the effectiveness of log parsing methods on
log mining, we apply different log parsers to tackle the
parsing challenge of a real-world anomaly detection task.
This task employs Principal Component Analysis (PCA)
to detect anomalies. Due to the space limit, the technical
details of this anomaly detection task is described in our
supplementary report [23]. There are totally 16,838 anoma-
lies in this task, which are found manually in [4]. We re-tune
the parameters of the parsers for better parsing accuracy.
LKE is not employed because it could not handle this large
amount of data (10m+ lines) in reasonable time. Table 6
demonstrates the evaluation results. Reported anomaly is
the number of anomalies reported by log mining model
(i.e., PCA) while adopting different log parsers in the log
parsing step. Detected anomaly means the number of true
anomalies detected by PCA. False alarm is the number of
wrongly detected anomalies. Ground truth is an anomaly
detection task with exactly correct parsed results. Notice
that even the ground truth could not detect all anomalies
because of the boundary of the PCA anomaly detection
model.

From Table 6, we observe that LogSig and IPLoM lead
to nearly optimal results on the anomaly detection task.
However, SLCT does not perform well in anomaly detection
with its acceptable parsing accuracy (0.83). It reports 7,515
false alarms in anomaly detection, which introduces exten-
sive human effort on inspection. Futhermore, the parsing
accuracy of SLCT (0.83) and LogSig (0.87) is comparable,
but the performance of anomaly detection using LogSig as
parser is one order of magnitude better than that using
SLCT. Anomaly detection task using LogSig only reports
413 false alarms. These reveal that anomaly detection results
are sensitive to some critical events, which are generated
by log parsers. It is also possible that F-measure, despite
pervasively used in clustering algorithm evaluation, may
not be suitable to evaluate the effectiveness of log parsing
methods on log mining.

Findings. Log parsing is important because log mining is
effective only when the parsing result is accurate enough.
Log mining is sensitive to some critical events. 4% errors
in parsing could even cause one order of magnitude perfor-
mance degradation in anomaly detection.

The parameters of POP in this experiment are the same
as those tuned for 2k HDFS datasets. We observe that
the accurate parsed results of POP are effective from the
perspective of this anomaly detection task. Although there
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Fig. 9: Impact of GS

are still 37% non-detected anomalies, we think this is the
limitation of the anomaly detection model PCA. Because
the anomaly detection task with ground truth as input
provides comparable performance, where 34% anomalies
are not detected. Note that although the performance of the
anomaly detection task with POP as input is the same as
that of IPLoM in Table 6, their parsing results are different.

4.5 Parameter Sensitivity
To study the impact of parameters, we evaluate the accuracy
of POP while varying the value of the studied parameter. All
the sensitivity experiments are run on the 2k datasets, which
are the datasets used to evaluate the accuracy of the parsers
in Section 4.2. Due to the space limit, we only demonstrate
the results of parameter GS on HPC and HDFS here in
Fig. 9, while the remaining results are provided in our
supplementary report [23]. Similar to the parameter setting
in our accuracy experiments, we set splitRel to 0.1, splitAbs
to 10, maxDistance to 0. We observe that the accuracy of
POP peaks for all datasets if we set GS in range [0.5, 0.6].
When GS is smaller, a log group is easier to get shipped
to step 4 without further partitioning, which may lower the
accuracy because we may put log messages with different
log events into the same log group. Thus we can observe
the relatively lower accuracy in range [0, 0.3] on HPC and
range [0, 0.2] on HDFS. When GS is larger, a log group
has higher probability to go through partitioning process
in step 3, which may lower the accuracy because we may
put log messages with the same log event into different log
groups. Thus we can observe the relatively lower accuracy
for range [0.8, 1.0] on HPC and range [0.8, 1.0] on HDFS.
For dataset BGL, Zookeeper, and Proxifier, POP’s accuracy
is consistently high (larger than 0.9) under all GS values.
POP is also not sensitive to splitRel and splitAbs in our
experiments. For maxDistance, setting a too large value
will cause accuracy drop.

To pick a suitable value, we could first set the parameter
to a reasonable value according to its physical meaning.
Then we tune it on a small sample dataset by evaluating
the resulting accuracy. After finding the best parameter, we
can apply it to the original dataset.

4.6 Observations
Among the existing log parsers, LKE has quadratic time
complexity, while the running time of others scales linearly
with the number of log messages. LogSig is accurate on
most datasets. IPLoM is accurate and efficient on small
datasets. SLCT requires the least running time. Although
these widely used log parsing methods have their own
merits, none of them can perform accurately and efficiently
on various modern datasets. First, SLCT is not accurate
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enough. Because of its relatively low parsing accuracy,
in our case study in Section 4.4, the false alarm rate
of the subsequent anomaly detection task increases to
40%, which causes 7,515 false positives. Secondly, LKE and
LogSig cannot handle large-scale log data efficiently. Specif-
ically, LKE has quadratic time complexity, while LogSig
needs computation-intensive iterations. Moreover, LKE and
LogSig both require non-trivial parameter tuning effort.
Finally, IPLoM cannot efficiently handle large-scale log data
(e.g., 200 million log messages) due to the limited comput-
ing power and memory of a single computer. Our proposed
POP is the only log parser that performs accurately and
efficiently on all the datasets.

5 DISCUSSIONS

In this section, we discuss the limitations of this work and
provide some potential directions for future exploration.

Diversity of dataset. Not all datasets (two out of five)
used in our evaluation are production data, and the results
may be limited by the representativeness of our datasets.
This is mainly because public log data is lacking. As a result,
we cannot claim that our results are broadly representative.
However, Zookeeper and HDFS are systems widely adopted
by companies for their distributed computing jobs. We
believe these logs could reflect the logs from industrial
companies to some extent. We also mitigate this issue by
generating many sample datasets from the original ones,
where each sample dataset has different properties, such as
log size and the number of log events. The proposed parser
POP at least has consistent accuracy and efficiency on all
these datasets, which demonstrates its robustness. Besides,
we thank those who release log data [4], [31], [32], which
greatly facilitates our research.

Diversity of log mining tasks. Results of effectiveness
of log parsing methods are evaluated on anomaly detection,
which may not generalize to other log mining tasks. This
is mainly because public real-world log mining data with
labels is scarce. However, the anomaly detection task eval-
uated is an important log mining task widely studied [35],
[36], which is presented in a paper [4] enjoying more than
300 citations. Besides, even conducting evaluation on one
log event mining task, the result reveals that an accurate
log parser is of great importance for obtaining optimal
log mining performance. We will consider to extend our
methodology on more log parsing data and different log
mining tasks in our future work.

Logging of Event ID. Log parsing process can also be
improved by recording event ID in logs in the first place.
This approach is feasible because developers who design
the logging statement know exactly the corresponding log
event. Thus, adding event ID to logging statement is a good
logging practice [37] from the perspective of log mining.
Event ID adding tools that can automatically enrich logging
statements may greatly facilitate the log parsing process.

Training Log Data Usually we hope to train our log
parser on as many logs as possible. This can increase the
generalizability of the results obtained by POP. This is also
why we propose a parallel log parsing method that aims for
parsing large-scale logs. However, we agree that in case we
have too many historical logs for processing, sampling is an

effective way. We suggest two methods to sample training
data. (1) Using the latest logs. This sampling method is more
likely to get the newest log events produced by new-version
systems. (2) Collecting the logs periodically (e.g., collecting
the logs every single day). This sampling method can allow
the variability of logs. The quantity of sample logs depends
on the training time we can afford. For example, in case of
POP, if we want to finish the training process in 7 minutes
for HDFS logs, then we can use the latest 200 million log
messages.

Log Event Changes. Logs change over time, a log
message may not be matched by the current list of log
events. To solve this problem, developers can use POP to
periodically retrain on new training data to update the list.
In runtime, if a log message is not matched by any log
events, we mark it as “other events” and recorded. When
retraining, the developer can retrain on the log messages
marked as “other events”, and add the new log events to the
log event list. To avoid the burst of not-matched logs (e.g.,
a billion times), we can maintain a counter to remember the
number of log messages marked as “other events” after the
latest training. If it is larger than a threshold, an alarm is
reported to call for retraining.

POP for Big Data. We propose the parallel log parser
POP in the manuscript because the existing nonparallel log
parsers and SinglePOP cannot handle the large volume of
logs generated by modern systems in the big data era. We
can observe from the Fig. 7 that the increasing speed of
SinglePOP’s running time (i.e., slope) is faster than POP as
the log size becomes larger. The running time of SinglePOP
will be longer than that of POP on production level log data
(e.g., over 200m log messages). For example, the running
time of SinglePOP is already larger than that of POP on the
10m HDFS dataset as illustrated. Thus, although SinglePOP
is efficient, we need POP, a parallel design on top of Spark,
to handle production level log data efficiently.

6 RELATED WORK

Log Management: With the prevalence of distributed sys-
tems and cloud computing, log management becomes a
challenging problem because of security assurance require-
ments and the huge volume of log data. Hong et al. [38]
design a framework to sanitize search logs with strong
privacy guarantee and sufficiently retained utility. Zawoad
et al. [39] propose a scheme to reveal cloud users’ logs for
forensics investigation while preserving their confidential-
ity. Meanwhile, to assist log analysts in searching, filter-
ing, analyzing, and visualizing a mountain of logs, some
promising solutions, such as commercial Splunk [40], and
open-source Logstash [41], Kibana [42], have been provided.
These solutions provide many plugins/tools for monitor-
ing and analyzing popular system logs (e.g., TCP/UDP,
Apache Kafka) and present stunning visualization effects.
However, their log parsing procedures are mainly based
on prior knowledge and require user-defined matching
patterns (e.g., regular expressions). In this paper, we pro-
pose a automated log parsing method that can accurately
and efficiently parse production-level log data. Besides, the
evaluation of log parsing methods gives developers deeper
insights on the log parsing procedure.
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Log Analysis: Logs, as an important data source, are
in widespread use to ensure system dependability. For
anomaly detection, Xu et al. [4] propose a PCA-based
model, which is trained by system logs, to detect runtime
anomalies. Kc et al. [43] detect anomalies by using both
coarse-grained and fine-grained log features. As for pro-
gram verification, Beschastnikh et al. [6] propose Synoptic
to construct a finite state machine from logs as system
model. Shang et al. [7] analyze logs from both pseudo and
cloud environment to detect deployment bugs for big data
analytics applications. Log analysis also facilitates system
security assurance. Gu et al. [11] leverage system logs to
build an attack detection system for cyber infrastructures.
Oprea et al. [10] employ log analysis to detect early-stage
enterprise infection. Besides, Pattabiraman et al. [44] design
an assertion generator based on execution logs to detect
application runtime errors. Log analysis is also employed in
structured comparative analysis for performance problem
diagnosis [9] and time coalescence assessment for failure
reconstruction [45]. As shown in our experiemnts, the
accuracy and efficiency of log parsing could have great
impact on the whole log analysis tasks. Thus, we believe our
parallel log parsing approach could benefit future studies on
dependability assurance with log analysis.

Log Parsing: Log parsing has been widely studied in
recent years. Xu et al. [4] propose a log parser based on
source code analysis to extract log events from logging
statements. However, source code is often unavailable or
incomplete to access, especially when third-party compo-
nents are employed. Recent work proposes data-driven log
parsers (e.g., SLCT [15], IPLoM [22], LKE [5], LogSig [17]),
in which data mining techniques are employed. But an
open-source implementations of log parsers is still lacking.
Many researchers (e.g., [6], [9], [46], [47]) and practitioners
(as revealed in StackOverflow questions [48], [49]) in this
field have to implement their own log parsers to deal
with their log data. Our work not only provides valuable
insights on log parsing, but also releases open-source tool
implementations on the proposed log parser POP and four
representative log parsers

Empirical Study: Empirical studies have attracted con-
siderable attraction in recent years, because the empirical
results could usually provide useful insights and direct
suggestions to both academic researchers and industrial
practitioners. In particular, Yuan et al. [8], [50] conduct an
empirical study on the logging practices in open-source
systems. Based on their findings, they provide actionable
suggestions for improvement and a tool to identify poten-
tial unlogged exceptions. Besides, the logging practices in
industry has been studied in some recent work [51], [52].
Our work extends the previous conference paper [21], which
is an empirical study on log parsing and its subsequent use
in log mining.

7 CONCLUSION

This paper targets automated log parsing for the large-
scale log analysis of modern systems. Accordingly, we
conduct a comprehensive study of four representative log
parsing methods characterizing their accuracy, efficiency
and effectiveness on subsequent log mining tasks. Based on

the result of the comprehensive study, we propose a parallel
log parsing method (POP). POP employs specially designed
heuristic rules and hierarchical clustering algorithm. It is
optimized on top of Spark by using tailored functions
for selected Spark operations. Extensive experiments are
conducted on both synthetic and real-world datasets, and
the results reveal that POP can perform accurately and
efficiently on large-scale log data. POP and the four studied
log parsers have been publicly released to make them
reusable and thus facilitate future research.
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