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Abstract—Reliability prediction is an important task in soft-
ware reliability engineering, which has been widely studied in the
last decades. However, modelling and predicting user-perceived
reliability of black-box services remain an open research prob-
lem. Software services, such as Web services and Web APIs,
generally provide black-box functionalities to users through the
Internet, thus leading to a lack of their internal information
for reliability analysis. Furthermore, the user-perceived service
reliability depends not only on the service itself, but also heavily
on the invocation context (e.g., service workloads, network condi-
tions), whereby traditional reliability models become ineffective
and inappropriate. To address these new challenges posed by
blackbox services, in this paper, we propose CARP, a new
contextaware reliability prediction approach, which leverages
historical usage data from users to construct context-aware reli-
ability models and further provides online reliability prediction
results to users. Through context-aware reliability modelling,
CARP is able to alleviate the data sparsity problem that heavily
limits the prediction accuracy of other existing approaches. The
preliminary evaluation results show that CARP can make a
significant improvement in reliability prediction accuracy, e.g.,
about 41% in MAE and 38% in RMSE when only 5% of the
data are available.

Index Terms—Black-box services; reliability prediction; con-
text awareness, matrix factorization

I. INTRODUCTION

Reliability measures the probability of failure-free software

operation for a specified period of time in a specified en-

vironment [12]. Reliability prediction is an important task

in software reliability engineering [12], [13], which aims to

predict failure rates of components and overall system reliabil-

ity. These predictions are commonly used to evaluate design

decisions, trade-off design factors, identify potential failure

areas, and track reliability improvement [1]. In the last few

decades, reliability prediction has been widely studied, produc-

ing a variety of prediction models (e.g., Palladio component

model [3] and Poisson process model [7]). However, most of

these existing models target at reliability analysis of traditional

∗The work was done when the author was visiting CUHK.

white-box software systems, where the reliability of system

components are known or can be estimated through behaviour

models from internal information of the components. How to

model and predict the user-perceived reliability of emerging

Web services remains an open reserach problem.

Nowadays, various software services such as Web services

and Web APIs are emerging over the Internet. These services

have become an integral part for building modern Web applica-

tions, in which each service provides a black-box functionality

via some standard interfaces. To evaluate the reliability of a

(third-party) black-box service, traditional white-box reliabil-

ity prediction approaches become inapplicable due to a lack

of its internal behaviour information. In addition, different

from stand-alone software systems, software services operate

over the Internet and likely serve different users spanning

worldwide [40]. Therefore, the user-perceived reliability may

differ from user to user due to different user locations, and

vary from time to time due to dynamic service workloads and

network conditions. In such a setting, it is more suitable to

evaluate service reliability from user side than from system

side as evaluating traditional software systems. As a result,

modelling and predicting user-perceived reliability of black-

box services is an important task, which is exactly the goal of

our work.

Specifically, as with [19], [31], we compute user-perceived

service reliability as the ratio of the number of successful

service invocations against the total number of service invo-

cations performed by the user. The most straightforward way,

therefore, is to assess the reliability of a target service through

real invocations from users. However, each service usually

has many users and each user may need to assess a lot of

alternative services (with similar or identical functionalities).

Such exhaustive invocations can impose additional cost for

users (e.g., the service invocations may be charged) and also

incur expensive overhead for service systems (e.g., by con-

suming additional system resources), thus making it infeasible

in practice. It is more desirable to identify approaches that
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can achieve accurate reliability predictions without requiring

additional service invocations.

Towards this end, a few initial efforts have been made by

several recent studies, by applying the K-means clustering

technique [19], [20] or collaborative filtering techniuqes used

in recommender systems [31], [32]. These studies collect

partial invocation data (i.e., observed reliability on the invoked

services) from users and then construct statistical models for

prediction of unknown reliability records. Whereas these ap-

proaches obtain encouraging results, two significant challenges

remain: 1) Context modelling. From a user’s perspective,

reliability not only depends on a service itself, but also is

highly influenced by the context of service invocations (e.g.,

service load and network conditions). For example, user-

perceived reliability may differ from user to user due to differ-

ent user locations, and may vary from time to time incurred

by service load variations and dynamic network conditions.

How to leverage such context information to aid in reliability

prediction is still a challenging problem. 2) Data sparsity. In

practice, each user typically invokes only a few services at

each time, leading to a limited number of invocation samples.

When modelling the reliability given a specific context, the

data matrix becomes extremely sparse (i.e., most of reliability

records are unknown). With limited training data, it is difficult

to make accurate reliability predictions.

In this paper, we propose CARP, a context-aware reliability

prediction approach that aims to tackle the above challenges.

CARP models reliability as a function jointly determined

by the (user, service, context) tuple of a service invocation.

Then the model is constructed based on a novel formulation

of context-specific matrix factorization by lerveraging the

implicit context information between users and services. To

guarantee computational efficiency, CARP comprises an offline
step to train the context-aware reliability model from historical

invocation data, and another online step to support on-demand

reliability predictions for ongoing service invocations. We

evaluate CARP on a publicly available dataset with real-world

reliabiltiy samples collected from Amazon EC2 services [19].

The evaluation results show that CARP can better capture the

characteristics inherent in reliability of black-box Web services

and therefore yields a significant improvement in prediction

accuracy (e.g., up to 41% in MAE and 38% in RMSE) over

the state-of-the-art reliability prediction models.

The main contributions of this paper can be summarized as

follows:

• We study the problem of predicting user-perceived relia-

bility of black-box Web services, which remains an open

and challenging research problem.

• We present CARP, a context-aware reliability model with

its construction for reliability prediction, by leveraging a

novel formulation of context-specific matrix factorization.

• The evaluation results show that CARP makes a signifi-

cant improvement in prediction accuracy over the state-

of-the-art reliability prediction models.

The remainder of this paper is organized as follows. Sec-

tion II introduces the background. Section III describes the

details of CARP. We report the evaluation results in Section IV

and make some discussions in Section V. We then review the

related work in Section VI, and finally conclude the paper in

Section VII.

II. BACKGROUND

Collaborative filtering (CF) techniques [21] are widely used

to rating prediction in recommender systems, such as movie

recommendation in Netflix. The goal of CF is to leverage

partially-observed rating data to predict the remaining un-

known ratings, so that movies can be recommended to users

according to the predicted ratings. Matrix factorization (e.g.,

PMF [18]) is a classic model to address the collaborative

filtering problem, which constrains the rank of the data matrix,

i.e., rank(R) = d. The low-rank assumption is based on

the fact that the entries of R are largely correlated, thereby

resulting in a low effective rank in R. Concretely, factoring

a matrix is to map both users and services into a joint latent

factor space of a low dimensionality d such that values of the

data matrix can be captured as inner products of latent factors

in that space. Then the latent factors can be employed for

further prediction on unknown data entries.

Formally, given n users and m services, we denote latent

user factors as U ∈ R
d×n and latent service factors as S ∈

R
d×m. Both of them are used to fit the data matrix R, i.e., R ≈

UTS. To avoid overfitting, regularization terms that penalize

the norms of the solutions (i.e., U and S) are added. Thus we

resolve to minimize the following loss function:

L =
1

2

n∑
i=1

m∑
j=1

Iij(Rij − UT
i Sj)

2
+

λU

2
‖U‖2F +

λS

2
‖S‖2F , (1)

where the first term indicates the sum of squared error in

approximation. Especially, Iij acts as an indicator that equals

to 1 if Rij is observed, and 0 otherwise. The remaining terms,

namely regularization terms, are added to avoid overfitting.

‖·‖F denotes the Frobenius norm [18], and λU , λS are two

parameters to control the extent of regularization.
Gradient descent is a widely used method to find a local

minimum of an objective function in an iterative way. As for
the PMF model expressed in Equation 1, the gradient descent
algorithm works by initializing Ui and Sj randomly and
iterating over the following updating rules until convergence:

Ui ← Ui − η
∂L
∂Ui

, (2)

Sj ← Sj − η
∂L
∂Sj

, (3)

After obtaining the derivatives of Ui and Sj from Equation 1,
we derive the following updating rules:

Ui ← Ui − η
( m∑

j=1

Iij(U
T
i Sj −Rij)Sj + λUUi

)
, (4)

Sj ← Sj − η
( n∑

i=1

Iij(U
T
i Sj −Rij)Ui + λSSj

)
. (5)

18



...

Reliability Model
for Context c1

Timeline
0 1 2 3

Users

Context-Aware
Reliability Models

Historical
Usage Data...

Context-Specific
Matrix Factorization

Context-Specific
Data Aggregation

Context Identification

Offline Model ConstructionOnline Reliability Prediction

Prediction
Results

Model
Updating

2s Ns...

Software Services
Service
Usage

Observed
Reliability Data

Aggregated
Reliability Data

Context-Aware
Reliability Models

Context c1 Context c2

Reliability Model
for Context c2

1s

0 0 1

0 0.3 0

0.4 0 0

1u
2u
3u

1s 2s 3s
1 0 1

0 0 0

0.4 0.3 0

1u
2u
3u

1s 2s 3s
0 0 0

0 1 0

0.4 0 1

1u
2u
3u

1s 2s 3s
1 0 0

0 1 0.9

0 0 0.3

1u
2u
3u

1s 2s 3s

0 0 1

0 0.7 0

0.4 0 1

1u
2u
3u

1s 2s 3s
1 0 1

0 1 0.9

0.4 0.3 0.3

1u
2u
3u

1s 2s 3s

Fig. 1. The Framework of Context-Aware Reliability Prediction

In this way, the latent factors Ui and Sj move iteratively by a

small step of the average gradients, i.e., ∂L
∂Ui

and ∂L
∂Sj

, where

the step size is controlled by a learning rate η.

III. CONTEXT-AWARE RELIABILITY PREDICTION

In this section, we describe the overview and details of our

context-aware reliability prediction approach.

A. Overview

Fig. 1 presents our context-aware reliability prediction

framework, which comprises three phases: 1) Data collection.

A user-collaboration mechanism, proposed in our previous

work [30], is applied to collecting historical usage data

from users. Users can contribute their observed reliability

data on the invoked services and get back personalized

(i.e., from user side) reliability prediction results. 2) Offline
model construction. Using the collected reliability data,

we can construct the context-aware reliability model by a

process involving context identification, context-specific data

aggregation, and context-specific matrix factorization. The

model construction can be performed offline at a periodical

interval to update the model parameters with newly-

observed reliability data. 3) Online reliability prediction.

The constructed reliability models can be used to provide

personalized reliability prediction results to users in an online

manner.

B. Context-Aware Reliability Model

For traditional software systems, the researchers generally

take reliability as a constant value that measures the probability

of failure-free software operation. Given a specified period of

time, the software reliability is defined as follows:

r(s), (6)

where s denotes the specific software system or component.

r(s) depends on the software-specific parameters such as soft-

ware architecture, system resources (e.g., CPU, memory, and

I/O), and other software design and implementation factors.

However, this traditional reliability model is not applicable

for measuring user-perceived reliability of black-box services.

As mentioned before, service reliability should be evaluated

from user side other than from system side as evaluating tradi-

tional software systems. Due to the influence of user locations

and network connections, different users may experience quite

different reliability even on the same service. To characterize

user-perceived reliability, Zheng et al. [30], [31] propose the

following model:
r(u, s), (7)

where u and s denote the specific user and service respectively.

r(u, s) depends both on user u and service s.

Further, this model is extended to incorporate temporal

information in [19], considering that user-perceived reliability

may vary from time to time due to fluctuating service work-

loads and dynamic network conditions. Specifically,

r(u, s, t), (8)

formulates the user-perceived reliability for an invocation

inv(u, s, t) between user u and service s at time slice t.
Although this new model, r(u, s, t), can naturally character-

ize user-perceived reliability well, we find it difficult to directly

apply it to reliability prediction. Because each user has limited

historical usage data, applying r(u, s, t) to model the data can

lead to such data sparsity problem and thus result in inaccurate

predictions.

In this paper, we argue that the time-dimensional charac-

teristics can be typically captured by a finite set of context

conditions, each of which is an abstract representation of the

underlying factors such as service workloads and network

conditions. It is further endorsed by the fact that service

workloads and network conditions likely have regular daily

distributions [23]. Thus, a specific context condition likely

determines the reliability value at a specific time slice. Based

on this observation, we propose a context-aware reliability

model:
r(u, s, c), (9)

where c denotes the specific context condition under which

the invocations inv(u, s, t) are performed. r(u, s, c) indicates

that the user-perceived reliability depends on the user u, the

service s, and the context c. Especially, r(u, s, t) ≈ r(u, s, c),
if the context condition is c at time slice t. With a limited
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number of contexts, this model can make reliability data less

sparse. In the following, we will describe the use of this model

for context-aware reliability prediction.

C. Offline Model Construction

Formally, we can collect a 3-dimensional matrix R ∈
R

M×N×T , which records the reliability data for M users, N
services, and T time slices. Ru,s,t = r(u, s, t) when the reli-

ability value r(u, s, t) of invocations inv(u, s, t) is observed;

otherwise, we set Ru,s,t = 0 as an unknown entry. Due to the

afore-mentioned data sparsity problem, the matrix R is highly

sparse in practice with a large number of unknown entries.

The goal of reliability prediction is to predict these unknown

entries, whereby the reliability of an ongoing invocation can

be further predicted. As illustrated in the right panel in Fig. 1,

the offline model construction comprises three steps: context
identification, context-specific data aggregation, and context-
specific matrix factorization.

1) Context Identification
To characterize and identify different context conditions, we

employ k-means clustering technique to cluster the reliability

data R with T time slices into C clusters, where each cluster

represents a specific context and different time slices grouped

into one cluster belong to the same context. To achieve this,

the observed reliability data between M users and N services

at each time slice t can be constructed as a feature vector for k-
means clustering. However, due to the sparse nature of R, the

feature vectors would become high-dimensional and sparse,

further leading to bad clustering performance. To overcome

this issue, we define a feature vector ft for time slice t using

the average reliability value of each service:

ft =
(
r̄(s1, t), r̄(s2, t), · · · , r̄(sN , t)

)
, (10)

where r̄(s, t) = mean({Ru,s,t | Ru,s,t > 0, 1 ≤ u ≤ M})
calculates the average reliability value of service s over the

observed entries at time slice t. Using these feature vectors, we

perform data clustering and get C different context conditions.

2) Context-Specific Data Aggregation
Different time slices may be clustered into each context. To

alleviate the data sparsity problem, we propose to aggregate

the data of different time slices within the same context. An

aggregated data matrix R̄ ∈ R
M×N×C can thus be obtained,

where each entry R̄u,s,c denotes the average reliability value

between user u and service s in context c:

R̄u,s,c = mean({Ru,s,t | Ru,s,t > 0, t ∈ context c}) (11)

Especially, R̄u,s,c = 0 indicates that the reliability for invo-

cations inv(u, s, t) performed in context c is unknown. For

example, in Fig. 1, the observed reliability data of four time

slices are aggregated into two contexts (i.e., context c1 and

c2) and thus the aggregated data become much denser.

3) Context-Specific Matrix Factorization
The problem of context-aware reliability prediction is to

predict the unknown entries (where R̄u,s,c = 0) of the

aggregated data R̄. This can be modelled as a collaborative

filtering (CF) problem, which aims for recovering the full

matrix from a small number of observed entries. Taking

Fig. 1 as an example, in the aggregated matrix for context

c1, we have four entries observed (e.g., R̄u3,s1,c1 = 0.4)

and five unknown entries to predict (e.g., R̄u1,s1,c1 ). Matrix

factorization (MF) [18] is a classic CF model that allows for

low-rank matrix approximation. Different with conventional

matrix factorization, we have a 3-dimensional reliability data

matrix R̄ ∈ R
M×N×C , including one 2-dimensional M -by-N

data matrix R̄(c) in each context c (1 ≤ c ≤ C), where its

entry R̄
(c)
u,s = R̄u,s,c.

In such a setting, we propose context-specific matrix factor-

ization. Formally, factorizing a data matrix R̄(c) ∈ R
M×N is to

map both users and services into a d-dimensional latent factor

space, such that the values of R̄(c) can be captured as the inner

products of the corresponding latent factors U (c) ∈ R
d×M and

S(c) ∈ R
d×N , i.e., R̄(c) ≈ U (c)TS(c), where U (c)T is the

transpose of U (c). Therefore, the context-specific MF model

for context c is to minimize the following loss function:

L(c)=
1

2

∑
u,s

I(c)us

(
R̄(c)

us − U (c)
u

T
S(c)
s

)2
+

λ

2

( ∥∥∥U (c)
∥∥∥2

F
+

∥∥∥S(c)
∥∥∥2

F

)
,

(12)

where the first term measures the sum of the squared errors

between the observed value R̄
(c)
us and the estimated value

U
(c)
u

T
S
(c)
s , and the second is a regularization term used to

avoid the overfitting problem [18]. I
(c)
us acts as an indicator:

I
(c)
us = 1 if R̄

(c)
us > 0; I

(c)
us = 0, otherwise. λ is a parameter to

control the extent of regularization.

The algorithm of gradient descent [18] is usually employed

to solve the MF model in Equation 12. For ease of compu-

tation, we solve each context-specific MF model sequentially,

and employ the solution of the last context for initialization

of the current one (e.g., use U (1) and S(1) to initialize U (2)

and S(2)). At last, we can obtain a pair of U (c) and S(c) for

each context c. In practice, the offline model construction can

be performed periodically to update the models with newly-

observed reliability data.

D. Online Reliability Prediction

The constructed models (i.e., U (c) and S(c)) allow for

reliability prediction for invocations performed between user

u and service s in context c, i.e., R̂u,s,c = U
(c)
u

T
S
(c)
s ,

where R̂ denotes the predicted matrix corresponding to R̄.

This is the basis for performing online reliability predic-

tion, which aims to predict the user-perceived reliability of

an ongoing invocation inv(u, s, tc). Therefore, we seek to

associate the invocation context at the current time slice tc
to an existing context c. In our implementation, we use the

newly observed reliability data to help identify the current

context. Specifically, given the observed feature vector ftc =(
r̄(s1, tc), r̄(s2, tc), · · · , r̄(sN , tc)

)
, we group it into one of

the existing context clusters. After obtaining the context c,
the reliability of inv(u, s, tc), denoted as r̂(u, s, tc), can be

predicted by r̂(u, s, tc) = R̂u,s,c.
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Statistics Values
#Records 17,150
#Users 50
#Services 49
#Workloads 7
Reliability range 0 ∼ 1
Reliability average 0.433

Fig. 2. Data Statistics
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TABLE I
ACCURACY COMPARISON

Data DensityMetric Approach
5% 10% 15% 20% 25%

Baseline 0.176 0.170 0.168 0.169 0.170
Hybrid [31] 0.152 0.084 0.079 0.073 0.073
CLUS [19] 0.077 0.059 0.043 0.036 0.031
PMF [32] 0.076 0.031 0.021 0.017 0.014

CARP 0.045 0.022 0.017 0.014 0.013
MAE

Impr.(%) 41.0% 27.8% 20.3% 13.9% 13.2%

Baseline 0.217 0.211 0.210 0.210 0.211
Hybrid [31] 0.204 0.109 0.102 0.094 0.094
CLUS [19] 0.112 0.093 0.066 0.060 0.052
PMF [32] 0.110 0.050 0.036 0.031 0.028

CARP 0.067 0.037 0.031 0.029 0.027
RMSE

Impr.(%) 38.9% 24.9% 14.8% 5.8% 6.0%

IV. EVALUATION

In this section, we present our results on evaluating the

effectiveness of CARP. For ease of reproducing our approach,

we release our source code with detailed experimental results

on our WS-DREAM project page1. The WS-DREAM repos-

itory [36] is currently hosted on Github to disseminate our

research results as well as to release open datasets and source

code for Web service research. With both datasets and source

code publicly released, our WS-DREAM repository would

allow easily reproducing the existing approaches and give

flexibility of extending new ones, which hopefully inspires

more research efforts in the Service Society.

A. Data Description

Our experiments are conducted based on a real-world re-

liability dataset recently released in [19]. The dataset was

collected using Amazon EC2 platform, which contains 17,150

reliability records from about 2.5 million invocations between

50 users and 49 services under 7 different workloads. Fig. 2

and 3 present some data statistics and the data distribution.

Specifically, the services are implemented as matrix multipli-

cation operations with different computational complexities,

while the users are simulated by a “stress testing” tool,

loadUI [19]. Both users and services are deployed into dif-

ferent locations across the seven EC2 regions. The service

workload is controlled by setting different time intervals (i.e.,

3∼9 sec) between consecutive invocations. Each reliability

value is calculated as the successful ratio of 150 consecutive

service invocations.

1http://wsdream.github.io/CARP

B. Evaluation Metrics

To evaluate prediction accuracy, we use two standard error

metrics, MAE (Mean Absolute Error) and RMSE (Root Mean

Square Error):

MAE =
∑

inv(u,s,t)

∣
∣r̂(u, s, t)− r(u, s, t)

∣
∣/N, (13)

RMSE =

√ ∑
inv(u,s,t)

(
r̂(u, s, t)− r(u, s, t)

)2/
N, (14)

where r(u, s, t) and r̂(u, s, t) denote the observed reliability

value and the corresponding predicted value respectively, for

an invocation inv(u, s, t). N is the total number of testing

samples to be predicted. Both metrics measure the average

magnitude of the errors and smaller values indicate better pre-

diction accuracy. Compared to MAE, RMSE gives relatively

high weights to large errors and turns to be more suitable when

large errors are particularly undesirable. These two metrics

have also been adopted by the existing work [19], [31].

C. Accuracy Results

We compare CARP with the following state-of-the-art ap-

proaches that have been recently proposed for reliability

prediction of Web services.

• Baseline: This is a baseline approach that simply uses

the overall average value of the observed reliability data

as prediction results.

• Hybrid [31]: This approach models reliability prediction

as a collaborative filtering (CF) problem, which is solved

by combining two traditional CF approaches: user-based

approach (UPCC) and item-based approach (IPCC).

• CLUS [19]: Based on K-means clustering, this

approach clusters historical reliability data according to

user-specific, service-specific, and environment-specific

parameters respectively, and hashes the average reliability

value of each cluster for prediction.

• PMF [32]: This is a widely-used conventional matrix fac-

torization model, where the reliability data are modelled

by a pre-defined low-rank matrix model.

As we mentioned before, the observed reliability data are

sparse in practice, because each user usually invokes only a

small set of services out all of them. To simulate the data

sparsity in our experiments, we randomly remove the entries

from the data matrix R in our dataset, so that each user only

keeps a few available historical reliability records. We use the

remaining data for model construction and the removed values

for accuracy evaluation. Specifically, we vary the data density

from 5% to 25% at a step increase of 5%. Data density = 5%,

for example, indicates that each user invokes only 5% of the

services, and each service is invoked by 5% of the users. For

Hybrid and CLUS, we employ the executable program with

its parameters provided in [19]. For PMF, we carefully tune

the parameters and set d = 2 and λ = 0.01 with best accuracy

results. To make CARP consistent with other approaches, we

set the number of context conditions C = 7 as with CLUS,
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(a) MAE

(b) RMSE

Fig. 4. Impact of Data Sparsity

and set d = 2, λ = 0.01 as with PMF. Each experiment is run

for 20 times and the average results are reported.

Table I provides the prediction accuracy results of different

approaches in terms of MAE and RMSE. We can see that

CARP consistently outperforms the other approaches with

smaller MAE and RMSE. Compared to the most competitive

results of PMF, CARP still has 13.2%∼41.0% improvement

on MAE and 6.0%∼38.9% improvement on RMSE. It in-

dicates that our CARP model fits the reliability data better

with context-aware reliability modelling. In particular, CARP

achieves a larger improvement at a smaller data density (e.g.,

the largest improvement is achieved at data density = 5%),

which demonstrates its effectiveness in alleviating the data

sparsity problem for reliability prediction.

D. Impact of Data Sparsity

To study the impact of data sparsity on prediction accuracy,

we evaluate CARP by varying the data density from 5% to

50% at a step increase of 5%. A lower data density indicates

higher data sparsity because more data are removed during

data processing. Fig. 4 presents the evaluation results (with

95% confidence interval) on both MAE and RMSE. We

can observe that better prediction accuracy can be achieved

with the increase of data density from 5% to 50%. That is,

MAE decreases from 0.045 to 0.009 and RMSE decreases

from 0.067 to 0.022. The results show that more training

data can usually provide more useful information for model

construction and thus achieve better prediction accuracy. In

particular, the significant fluctuation of the curve, when the

data is extremely sparse (e.g., data density = 5%), further

confirms that data sparsity is a great challenge in achieving

accurate reliability prediction. Our CARP approach takes a

first step forward for addressing the data sparsity challenge

and achieves a significant improvement.

V. DISCUSSION

Reliability measurement v.s. prediction. One may argue

that active measurement (e.g., through invoking a service

periodically) is a straightforward way to determine reliability

of a service. However, this simple approach is not scalable.

Each user may have a large number of services to measure,

while each service usually has a large user base. Active

measurement would incur prohibitive overhead to both users

and services. Furthermore, many services are not free, which

will lead to additional cost of service invocations. In these

cases, it is desired to perform accurate reliability prediction

without intensive direct service invocations.

Collaborative data collection. A data collection framework

capable of assembling invocation records from users is needed

to support online reliability prediction. Our work is developed

based on underlying usage data collection, but we focus

primarily on processing and prediction of reliability values.

We have previously developed a WSRec framework [33] for

collaborative QoS collection, where a set of QoS collector

agents were developed using Apache Axis and further de-

ployed on the global PlanetLab platform to collect QoS records

of publicly-available Web services at runtime. This framework

can be easily extended to support reliability data collection.

In addition, a privacy-preserving scheme is explored in [38]

by applying differential privacy techniques to dealing with

potential privacy issues of usage data collection from different

users. We also expect to employ a streaming data platform,

e.g., Amazon Kinesis2, to collect real-time usage data streams,

but we leave the implementation of such an end-to-end system

for future work.

Representativeness of datasets. CARP is a data-driven

approach that highly depends on the characteristics of reli-

ability data. We develop and validate CARP based on the

reliability dataset collected from real-world services. But the

results may still be limited by the diversity of our dataset. Real-

world service usage datasets are scarce in public. To improve

generalizability, we plan to further validate our apporach

on some other QoS attributes, such as response time and

throughput. We believe this work can serve as a good baseline

for future research.

VI. RELATED WORK

A. Software Quality Assessment

Software quality assessment [9], [22] is an important field

of study and practice in software engineering that can aid

in decision making during all phases of software lifecycle.

Software quality [4], [8] generally covers many aspects of

software products such as correctness, performance, reliability,

maintainability, etc. Unfortuntely, many of them cannot be

easily quantified or measured for software quality assessment.

2https://aws.amazon.com/kinesis

22



As a result, an abundance of software quality prediction mod-

els [9] have been built based on measurable internal metrics.

Early work applies simple regression models (e.g., multivariate

regression model [2], [14]) to establishing projections between

various design structures and the resulting software quality

charactersitics. More recent work (see [17]) proposes the use

of sophisticated machine leraning techqniues for improving

software quality prediction. These stuides focus on analyzing

the expected software quality of design alternatives from the

software itself.

In particualr, as an important aspect of software quality,

software reliability assessment and prediction have been ex-

tensively studied in the last decades [12], [15]. The researchers

have proposed a variety of reliability prediction models, such

as Palladio component model [3], Poisson process model [7],

structure-based model [5], etc. However, most of these existing

models target at analyzing traditional white-box software

systems, where the reliability of system components are all

known. In this paper, we propose to address the problem of

user-perceived reliability of black-box services, where existing

models are inapplicable. We present a novel approach that can

exploit historical usage data from users for context identifica-

tion of service invocations and can further leverage them for

context-aware reliability prediction.

B. QoS Prediction of Web Services

The work most closely related to ours is the study on QoS

(Quality-of-Service) prediction of Web services. Web services

are black-box software services that provide software compo-

nents as building blocks for enterprise application integration

(via Web service composition [26]). QoS attributes such as

response time, throughput, and reliability are widely used to

evaluate the non-functional aspects of Web services for QoS-

based Web service composition [26]. To address the QoS

prediction problem of Web services, some prior studies have

proposed the use of collaborative filtering techniques in recent

literature. Collaborative filtering (CF) [21] is a well-studied

technique for rating prediction in recommender systems, which

consists of two types of approaches: neighbourhood-based

approaches and model-based approaches. For example, in our

previous work we propose neighbourhood-based collaborative

filtering approaches (e.g., UIPCC [31], [33]) and model-based

collaborative filtering approaches (e.g., PMF [32], EMF [25],

AMF [37], [39]) for service quality (or reliability) prediction.

However, these models only consider user-specific and service-

specific fators, which results in low prediction accuracy. Two

more recent stuides [28], [29] further incorporate temporal

information into their models and make use of tensor factor-

ization for time-aware QoS prediction. But tensor factorization

suffers from the scalability problem and is not sufficiently

efficient for online reliability prediction in our setting.

Current research has seldom focused on user-perceived reli-

ability prediction of software services. Zheng et al. [31] make

the first effort in this direction, where they employ historical

usage data from users for reliability prediction and model it

as a collaborative filtering problem. In [31], they propose a

neighbourhood-based approach, Hybrid, which combines two

traditional CF approaches: user-based CF (UPCC) and item-

based CF (IPCC). The following work [32] further extends a

model-based approach, matrix factorization (PMF), to address

this problem. However, these models only consider user-

specific and service-specific parameters. Silic et al. [19] make

a further step forward and incorporate environment-specific

parameters for reliability prediction. This approach achieves

scalability by clustering reliability data according to user-

specific, service-specific, and environment-specific parameters,

but sacrifices prediction accuracy (which is worse than PMF
as shown in Table I). Our approach, instead, addresses these

limitations on accuracy and scalability by performing context-

aware reliability prediction.

C. Data-Driven Software Engineering

The data generated throughout the software lifecycle (e.g.,

source code, revision histories, bug reports, and runtime logs)

contain a wealth of valuable information that can aid in

software engineering tasks [34]. The goal to explore the

potential of such rich data motivates a large body of studies

related to mining software engineering data [24], software

intelligence [6], and software analytics [27]. For example,

Lessmann et al. study the use of classification models for

defect prediction [10]. Lin et al. employ clustering techniques

to help with system failure diagnosis [11]. Xie et al. employ

natural language processing techniuqes to extract method

specifications [16]. Zhou et al. leverage information retrieval

techniques for bug localization [35]. All these studies employ

data-driven approaches to gain actionable information and

uncover powerful insights for better software development and

maintenance. Our work can be viewed as another application

in data-driven software engineering, where we describe the

novel use of context-specific matrix factorization on historical

invocation data for service reliability prediction.

VII. CONCLUSION AND FUTURE WORK

This paper presents CARP, a context-aware reliability pre-

diction approach for user-perceived reliability prediction of

black-box services. CARP exploits historical usage data from

users to assess the observed reliability of services, and further

leverage them to construct context-aware reliability models.

Through context-aware model training and prediction, CARP

is capable of alleviating the data sparsity problem that heavily

limits the existing models. The experimental results show that

CARP makes a significant improvement in prediction accuracy

over the state-of-the-art reliability models.

The use of data-driven approaches is promising for the

quality management of black-box services in the field. We

believe CARP can serve as a good starting point towards

this end. As part of our future work, we plan to: 1) develop

more robust reliability prediction approaches to handle the data

collection from malicious users and services, 2) consider data

privacy when performing collaborative reliability prediction,

and 3) perform reliability evaluations on real-world services

to help identify and address reliability issues.
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