2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

IntelliAd: Assisting Mobile App Developers in
Measuring Ad Costs Automatically

Cuiyun Gao*T, Yichuan Man¥, Hui Xu*T, Jieming Zhu', Yangfan Zhou'$, and Michael R. Lyu*T
*Shenzhen Research Institute, The Chinese University of Hong Kong, China
TDept. of Computer Science and Engineering, The Chinese University of Hong Kong, China
School of Computer Science, Fudan University, Shanghai, China
§Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education, China
TBeijing Jiaotong University, China

Abstract—In-app mobile advertising serves as a primary
source of revenue for most free apps. Such apps are embedded
with third-party SDKs for ads displaying and are monetized by
user impressions. However, ad placement can sometimes spoil
user experience, for example, by too much memory consumption
and battery drainage, thus leading to app uninstalling and
unfavorable user feedback. Therefore, ensuring user perceptions
of mobile ads can be greatly beneficial to app developers. Fur-
thermore, various ad networks and formats make ads selection a
great challenge. To achieve this, we design a tool named IntelliAd
to automatically measure the ads-related consumption on mobile
phones. Based on the measured costs, developers can optimize
the ad-embedding schemes for their apps.

Keywords-Mobile Advertising; Ad Costs; Automatic Measure-
ment;

I. INTRODUCTION

In-app advertising is a form of advertising within apps and
on mobile devices such as phones and tablets. To embed
ads into apps, developers are required to introduce third-party
advertising SDKs and determine the ad networks to use (e.g.,
AdMob [2] or MoPub [5]). Moreover, mobile ads must be
defined as text, graphics or video based messages and in
fixed sizes (e.g., banner or interstitial). Ads rendering involves
requesting and fetching ads to display from the ad networks.
Successful renderings, i.e., user impressions, can benefit app
developers.

However, free app users may incur hidden costs, for ex-
ample, using much traffic usage for data transmission and
battery drainage for ads displaying. Such ad costs can spoil
user experience, resulting in customer loss and finally profit
reduction [8]. However, this does not mean that ads are
definitely hated by all the users and should be avoided for free
apps. According to a recent survey, 83% respondents stated
that “Not all ads are bad, but I want to filter out the really
obnoxious ones” [7]. Therefore, if we incorporate ads into
apps appropriately, the user experience can still be ensured.

In the paper, we classify ad costs into four types, including
memory consumption, CPU overhead, number of threads, and
traffic usage. Previous research mainly focuses on mitigating
the ad costs from the system side [11], leaving less flexibility
for app developers to modify or customize. In our work,
developers just need to embed the optional ads into apps, and
then the corresponding costs can be profiled and measured

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.123

253

by running our tool IntelliAd. Based on the measured costs,
developers can determine the optimal ad schemes. This pro-
cess can be handled by developers themselves and therefore
provide more flexibility. The experimental results verify the
effectiveness of our work.

II. THE APPROACH

In the section, we introduce the proposed measuring tool
IntelliAd. The metrics to measure include the memory con-
sumption, CPU overhead, number of threads, and traffic usage
during the app runtime.

Ad Display Control: To automatically measure the costs,
we employ the dynamic analysis tool AppsPlayground [10].
We have modified AppsPlayground to accurately measure the
costs of displaying ads. First, the execution rules have been
adjusted. We confined the UI widgets for ads (i.e., widgets
ending with “View”, “WebView”, or “FrameLayout” in the
class names) to be rendered only, not clicked. Moreover, to
ensure equal displaying durations, the interval between two
operations (e.g., clicks) are fixed, such as 20 seconds.

Memory Consumption: Memory management in Android
enables the system to allocate the precious resource. Much
consumption on the resources leads users to experience lag.
When the memory becomes constrained, the system slows
down dramatically [9]. IntelliAd employs the tool fop to
monitor the memory consumption, measured by “Resident Set
Size”.

CPU Overhead: The overall busyness of the system can be
quantified by the CPU utilization [4]. We suppose that different
ad SDKs manage the ad lifecycle differently, and observe their
CPU expended during the runtime. Also, fop is utilized to
record the CPU occupancy rate.

Number of Threads: Rendering ads in the user’s interface
involves the implementation of the UI thread. When the UI
thread(i.e., “main thread”) performs intensive work, apps may
appear to hang. Therefore, we also consider the number of
threads as a type of ad costs. The cost is evaluated through
reading the /proc/pid/stat file at the runtime.

Traffic Usage: Different ad networks and ad formats (e.g.,
banner, interstitial, or video) can influence the data transmitted.
IntelliAd utilizes the typical tool tcpdump [6] to estimate the
total bytes consumed in real time.

TABLE I
AD SCHEMES MEASURED

ID | Ad Network | Banner | Interstitial
Al AdMob v

A2 MoPub v

A3 AdMob v

A4 AdMob v v

Measuring Frequency Setting: The fop tool is set to run
at one second interval to measure the memory/CPU overhead.
IntelliAd reads the system files every 0.04s to capture the
number of threads. Besides, to record all the traffic transmitted,
tecpdump is started once the app is launched.

III. EXPERIMENTS

In the section, we have measured the ad costs for different
ad schemes, which evaluates the influence of schemes on ad
costs and also the effectiveness of IntelliAd.

A. Experimental Settings

In the experiment, we employ two leading ad networks, i.e.,
AdMob and MoPub, which occupy over half of the whole
android advertising market (68.0%) [1]. The ad formats are
defined as images and in two types of size (banner and
interstitial). Table I depicts the four ad schemes we have
experimented with. We choose the schemes for analyzing the
effects of different ad networks (A1l and A2), or formats (Al
and A3), or the numbers of ads (Al and A4).

Ad Cost Separation: Since only the costs produced by ads
are required, we create a prototype app for analysis. The costs
of each scheme are calculated by subtracting the costs of the
prototype app from those of the ad-embedded app.

One Page, One Ad: According to the mobile advertising
policies [3], the number of ads on a single screen should
not exceed one. Therefore, we design one button in the main
activity for navigating to an empty activity or interstitial ad
accordingly.

Mitigating Background Noise: To mitigate the background
noise, we restore the system environment to its original state in
the beginning of each measurement. Furthermore, the costs of
each ad schemes are measured for four times and the average
results are calculated for analysis.

B. Experimental Results

The mobile device we have used is the LG Nexus 5
smartphone with a rooted Android 5.0.1 operating system.
Figure 1 illustrates the increase rates for the corresponding
ad costs.

As Fig. 1 indicates, the ad costs for different ad schemes
exhibit obvious differences. The average increase rates are
1.12, 0.11, 2.52, and 8.84 times for memory consumed,
CPU overhead, the number of threads, and traffic usage,
respectively, with the standard deviations at 0.17, 0.13, 0.24,
and 4.24. We can discover that the traffic usage displays
the highest increase rate among all the cost types, and also
largest fluctuation along with ad schemes. This implies that
ad schemes can affect traffic consumption greatly. We then

254

Memory
CPU
#Thread
Traffic

=

N

=)
|} |

o))

Increase Rate (Times)
» 00

N

(=

Al A2 A3

Ad Schemes

A4

Fig. 1. Increase Rates of Ad Costs for Different Ad Schemes.

analyze the effects of ad networks and formats on the generate
costs.

(1) Ad Network: According to Figure 1, despite embedded
with the same ad format (banner), Al (AdMob) presents
nearly 2.8 times more than A2 (MoPub) regarding the traffic
growth, which is also verified in [11]. However, for the CPU
consumed, A2 displays 13.3 times more increase than Al.
Therefore, different ad networks impact ad costs differently.

(2) Ad Format: In Figure 1, although A1l (banner) and A3
(interstitial) are embedded with the same ad network, their ad
costs are different due to ad formats. A3 shows more increase
on CPU utilization (47.8%), which might be attributed to more
rendering work for the interstitial ad. The differences also
exhibit on the memory consumed and traffic usage. Thus, the
ad format is also an influence on the ad costs.

Moreover, by comparing Al with A4 (banner and intersti-
tial), we can discover that more ads embedded would increase
the ad costs seriously. For example, A4 presents much more
consumption on the data traffic and CPU overhead than Al,
50.1% and 95.7%, respectively. Based on the experimental
results, we can conclude that ad schemes can affect ad costs,
which also signifies the usefulness of IntelliAd.

IV. CONCLUSIONS

We introduce a tool named IntelliAd to automatically mea-
sure and profile ad costs of different ad schemes. Based on
the measured costs, developers can better determine the ads
to embed into their apps.

ACKNOWLEDGMENTS

This work was supported by the Key Project of National
Natural Science Foundation of China (Project No. 61332010),
the National Basic Research Program of China (973 Project
No. 2014CB347701), the Research Grants Council of the
Hong Kong Special Administrative Region, China (No. CUHK
14205214 of the General Research Fund), and 2015 Microsoft
Research Asia Collaborative Research Program (Project No.
FY16-RES-THEME-005). Yangfan Zhou is the corresponding
author.

REFERENCES

[1] Ad libraries provided by AppBrain.
libraries/ad.

http://www.appbrain.com/stats/

AdMob. https://www.google.com/admob/.

Behavioural policies. https://support.google.com/admob/answer/
2753860?hl=en-GB.

CPU time. https://en.wikipedia.org/wiki/CPU_time.

MoPub. http://www.mopub.com/.

Tcpdump.

User survey. https://www.vieodesign.com/blog/
new-data-why-people-hate-ads.

Why do people uninstall apps? https://www.quora.com/

‘Why-do-people-uninstall-the-apps.
Why does the iPhone need so much less RAM than Android devices?

255

[10]

[11]

https://www.quora.com/.

V. Rastogi, Y. Chen, and W. Enck. Appsplayground: automatic security
analysis of smartphone applications. In Proceedings of the 3rd Confer-
ence on Data and Application Security and Privacy (CODASPY), pages
209-220. ACM, 2013.

N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Pa-
pagiannaki, H. Haddadi, and J. Crowcroft. Breaking for commercials:
characterizing mobile advertising. In Proceedings of the 2012 Confer-
ence on Internet Measurement Conference (IMC), pages 343-356. ACM,
2012.

