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Abstract—Cloud applications built on service-oriented architectures generally integrate a number of component services to fulfill

certain application logic. The changing cloud environment highlights the need for these applications to keep resilient against QoS

variations of their component services so that end-to-end quality-of-service (QoS) can be guaranteed. Runtime service adaptation is a

key technique to achieve this goal. To support timely and accurate adaptation decisions, effective and efficient QoS prediction is

needed to obtain real-time QoS information of component services. However, current research has focused mostly on QoS prediction

of working services that are being used by a cloud application, but little on predicting QoS values of candidate services that are equally

important in determining optimal adaptation actions. In this paper, we propose an adaptive matrix factorization (namely AMF) approach

to perform online QoS prediction for candidate services. AMF is inspired from the widely-used collaborative filtering techniques in

recommender systems, but significantly extends the conventional matrix factorization model with new techniques of data

transformation, online learning, and adaptive weights. Comprehensive experiments, as well as a case study, have been conducted

based on a real-world QoS dataset of Web services (with over 40 million QoS records). The evaluation results demonstrate AMF’s

superiority in achieving accuracy, efficiency, and robustness, which are essential to enable optimal runtime service adaptation.

Index Terms—Cloud computing, runtime service adaptation, QoS prediction, online learning, adaptive matrix factorization

Ç

1 INTRODUCTION

CLOUD computing enables on-demand provisioning of
virtual computational resources over the Internet [11].

Nowadays, cloud platforms (e.g., Amazon EC2) have become
a common place to host and deliver various online applica-
tions, including search engine, e-commerce, multimedia
streaming, etc. Different from hosting applications within a
local enterprise network, applications deployed in a cloud
might scale across multiple geographically distributed data
centers [54] to serve their users globally. However, such
cloud applications encounter more difficulty in guaranteeing
quality of service (QoS) due to the constantly changing cloud
environment. Consequently, it is a significant task for appli-
cation designers to engineer their applications with self-
adaptation capabilities.

Service-oriented architecture (SOA) [37] is a modern archi-
tectural paradigm that composes component services in a
loosely-coupled way to fulfill complex application logic. Each
service provides a self-contained unit of functionality, run-
ning in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. In this paper, we
broadly refer to services as both component services hosted in

a cloud environment and other third-party Web services [7]
accessible over the Internet. Due to the loose-coupling and
dynamic-binding features of SOA, many cloud applications
nowadays employ SOA as a mechanism to achieve self-adap-
tation (e.g., [36]). For example, Amazon’s e-commerce plat-
form is built on SOA by composing hundreds of component
services hostedworldwide to deliver functionalities including
item recommendation, order fulfillment, and fraud detec-
tion [19]. To generate the dynamic Web content, each request
typically requires a page rendering component to invoke
other aggregator services, which in turn query many other
services (e.g., data stores) to construct a composite response.
In many cases, components even need to invoke some third-
party Web services (e.g., ads recommendation). To ensure
fluid page delivery, runtime service adaptation [35] is desired
to achieve resilience against potential QoS variations of com-
ponent services caused by the changing cloud environment.

With the rapidly growing service market, more function-
ally equivalent (or similar) services become available. As a
simple example, both providers CDYNE.COM and Webser-
viceX.NET offer equivalent Web services for querying
global weather information. Applications built on SOA are
able to switch component services without going offline,
making it possible to exploit such equivalent services for
runtime service adaptation. That is, current working serv-
ices can be replaced with the corresponding candidate serv-
ices at runtime to tolerate unacceptable QoS degradation
(e.g., unacceptable response time) or failures. Note that we
refer to working services as those being used by a cloud
application, and candidate services as those having equiva-
lent functionality with working services.

Effective runtime service adaptation requires knowledge
about real-time QoS changes of each working service and its
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candidate services in order tomake timely and accurate deci-
sions, including: 1) when to trigger an adaptation action,
2) whichworking services to replace, and 3) which candidate
services to employ [21]. Different from traditional compo-
nent-based systems,manyQoS attributes of component serv-
ices, such as response time and throughput, need to be
measured from user side (i.e., applications that invoke serv-
ices), rather than from service side (i.e., service providers).
For a running cloud application, working services are typi-
cally continuously invoked, whereby the corresponding QoS
values can be easily acquired and thus recorded. Existing
studies (e.g., [10], [28], [45]) on service adaptation have pro-
posed some effective methods to predict (e.g., by using time
series models) real-time QoS values of working services,
which can help determine when to trigger an adaptation
action andwhichworking services to replace.

However, to the best of our knowledge, there is still a lack
of research efforts explicitly targeting on addressing how to
obtain real-time QoS information of candidate services, thus
making it difficult in determining which candidate services
to employ in an ongoing adaptation action. A straightfor-
ward solution is to measure QoS values of candidate services
in an active way (a.k.a., online testing [33]), where users peri-
odically send out service invocations and record the QoS val-
ues experienced in reply. Unfortunately, this simple solution
is infeasible in many cases, since heavy service invocations
are too costly for both users and service providers. On one
hand, there may exist a large number of candidate services to
measure. On the other hand, QoS values frequently change
from time to time, thus continuous invocations are required
to acquire real-time QoS information. This would incur pro-
hibitive runtime overhead as well as the additional cost that
may be charged for these service invocations.

In this paper, the problem of QoS prediction has been for-
mulated to leverage historical QoS data observed from differ-
ent users to accurately estimate QoS values of candidate
services, while eliminating the need for additional service
invocations from the intended users. Inspired from collabora-
tive filtering techniques used in recommender systems [22],
we propose a collaborative QoS prediction approach, namely
adaptivematrix factorization (AMF). To adapt toQoS fluctua-
tions over time, AMF significantly extends the conventional
matrix factorization (MF) model by employing new techni-
ques of data transformation, online learning, and adaptive
weights. Comprehensive experiments, aswell as a case study,
have been conducted based on a real-world QoS dataset of
Web services (with over 40 million QoS records). Compared
to the existing approaches, AMF not only makes 17 � 93 per-
cent improvements in accuracy but also guarantees high effi-
ciency and robustness, which are essential in leading to
optimal runtime service adaptation. The key contributions
are summarized as follows:

� This is the first work targeting on predicting QoS of
candidate services for runtime service adaptation,
with unique requirements on accuracy, efficiency,
and robustness.

� An online QoS prediction approach, adaptive matrix
factorization, has been presented and further evalu-
ated on a real-world large-scale QoS dataset of Web
services.

� Both the source code and QoS dataset have been
publicly released1 to make our results easily repro-
ducible and to facilitate future research.

Extended from its preliminary conference version [51],
the paper makes several major enhancements: A framework
for large-scale QoS collection, a unified QoS model leading
to better accuracy, an experimental comparison with two
additional QoS prediction methods, a case study demon-
strating the practical use of AMF, a discussion highlighting
potential limitations and future work, and code release in
both Python and Matlab for reproducible research.

The remainder of this paper is organized as follows.
Section 2 introduces the background. Section 3 overviews
QoS-driven runtime service adaptation. Section 4 describes
our AMF approach to online QoS prediction. We report the
evaluation results in Section 5, provide a case study in
Section 6, and make some discussions in Section 7. We
review the related work in Section 8 and finally conclude
the paper in Section 9.

2 BACKGROUND

In this section, we present the background of our work from
the following aspects: service redundancy, QoS attributes,
collaborative filtering, and matrix factorization.

2.1 Service Redundancy

It is a trend that services are becoming more and more
abundant over the Internet [6]. As the number of services
grows, more functionally equivalent or similar services
would become available for a given task. One may argue
that the number of equivalent services offered by different
providers might not grow indefinitely, because usually a
small number of large providers and a fair number of
medium-sized providers would be enough to saturate the
market. However, as pointed out in [25], a provider might
offer different SLAs for each of service instances (e.g., plati-
num, gold and silver SLAs). Each instance might run on a
physical or virtual machine with different characteristics
(CPU, memory, etc.). Also, these instances might be exe-
cuted at completely different locations for the purpose of
load balancing and fault tolerance (e.g., by using CDNs). As
we want to differentiate between each instance, there are
many candidate service instances to choose for each specific
task. For example, we might assume 30 different providers
for each task and we would easily have 1,500 candidate ser-
vice instances to consider, if each provider deploys 50
instances of its service on average. Such service redundancy
forms the basis for runtime service adaptation.

2.2 QoS Attributes

Quality of Service is commonly used to describe non-func-
tional attributes of a service, with typical examples including
response time, throughput, availability, reliability, etc. [46].
Ideally, QoS values of services can be directly specified in
Service-Level Agreements (SLAs) by service providers. But
it turns out that many QoS specifications may become inac-
curate due to the following characteristics: 1) Time-varying:
The constantly changing operational environment, such as

1. http://wsdream.github.io/AMF
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varying network delays across the Internet [43] and dynamic
service workloads, makes many QoS attributes (e.g.,
response time and throughput) delivered to users fluctuate
widely over time. 2) User-specific: The increase of geographic
distribution of services has a non-negligible effect on user-
perceived QoS. Users from different locations usually
observe different QoS values even on the same service. These
characteristics make obtaining accurate QoS information for
runtime service adaptation become a challenging task.

2.3 Collaborative Filtering

Collaborative filtering (CF) techniques [44] are widely used
to rating prediction in recommender systems, such as movie
recommendation in Netflix. Specifically, users likely rate the
movies (e.g., 1 � 5 stars) they have watched. However, for
each user it is common that only a small set of movies are
rated. Given a sparse user-movie rating matrix, the goal of
CF is to leverage partially-observed rating data to predict
remaining unknown ratings, so that proper movies can be
recommended to users according to predicted ratings.

In a similar setting with rating prediction in recommender
systems, historical service invocations can produce a user-ser-
vice QoS matrix corresponding to each QoS attribute (e.g.,
response time matrix). Suppose there are n users andm serv-
ices, we can denote the collected QoS matrix as R 2 Rn�m.
Each row represents a service user (i.e., ui), each column
denotes a service (i.e., sj) in the cloud, and each entry (i.e.,Rij)
indicates the QoS value observed by user ui when invoking
service sj. As shown in Fig. 1b, the values in gray entries are
QoS data observed from the user-service invocation graph in
Fig. 1a, and the blank entries are unknown QoS values to be
predicted. For example, R11=1.4, while R12 is unknown
(denoted as ?). In practice, the QoS matrix is very sparse (i.e.,
Rij is unknown inmany entries), since eachuser often invokes
only a small set of services. The QoS prediction problem can
thus be modeled as a collaborative filtering problem [50],
with the aim to approximately estimate the unknown values
in thematrix from the set of observed entries.

2.4 Matrix Factorization

Matrix factorization [40] is one of the most widely-used
models to solve the above collaborative filtering problem,
by constraining the rank of a QoS matrix, i.e., rankðRÞ = d.
The low-rank assumption is based on the fact that the
entries of R are largely correlated in practice. For instance,
some close users may have similar network conditions, and
thus experience similar QoS on the same service. Therefore,
R has a low effective rank. Figs. 1b, 1c, and 1d illustrates an
example that applies matrix factorization to QoS prediction.

Concretely, the matrix R is factorized into a latent user
space U 2 Rd�n and a latent service space S 2 Rd�m, in such
a way that R can be well fitted by the inner product of U

and S, i.e., R̂ij ¼ UT
i Sj. To achieve this, we resolve to mini-

mize the following loss function

L ¼ 1

2

X
i;j

IijðRij � UT
i SjÞ2 þ �

2

X
i

Uik k22 þ
X
j

Sj

�� ��2
2

 !
; (1)

where the first term indicates the sum of squared error
between each observed QoS value (Rij) and the correspond-
ing predicted QoS value (UT

i Sj). Especially, Iij = 1 if Rij is
observed, and 0 otherwise (e.g., I11 = 1 and I12 = 0 in
Fig. 1b). The remaining terms, namely regularization
terms [40], are added to avoid overfitting, where Ui and Sj

are penalized using Euclidean norm. � is a parameter to
control the relative importance of the regularization terms.

Gradient descent [2] is the commonly adopted algorithm
to derive the solutions of U and S, via an updating process
starting from random initializations and iterating until con-
vergence. After obtaining U and S, a specific unknown QoS
value can thus be predicted using the corresponding inner
product. For example, R̂12 = UT

1 S2 = 0.8 in Fig. 1d.

3 QOS-DRIVEN RUNTIME SERVICE ADAPTATION

Fig. 2 illustrates an example of runtime service adaptation.
For applications built on SOA, the application logic is typi-
cally expressed as a complex workflow (e.g., using Business
Process Execution Language, or BPEL), which comprises a
set of abstract tasks (e.g., A;B;C). Service composition (e.g.,
[15], [46]) provides a way to fulfill these abstract tasks by
invoking underlying component services (e.g., A2; B1; C1)
provisioned in a cloud. However, in a dynamic environ-
ment, original services may become unavailable, new serv-
ices may emerge, and QoS values of services may change
from time to time, potentially leading to SLA (Service-Level
Agreement) violations of the original service composition
design. As a result, QoS-driven runtime service adaptation
is desired to cope with such a changing operational environ-
ment. In the example of Fig. 2, service C1 is replaced with
service C2 in an adaptation case that the QoS of C1 degrades.

To support this, a framework of QoS-driven runtime ser-
vice adaptation generally comprises: 1) a BPEL engine for
workflow management and execution; 2) an adaptation man-
ager that controls adaptation actions following predefined

Fig. 1. An illustration of QoS prediction by matrix factorization.

Fig. 2. An example of runtime service adaptation.

ZHU ETAL.: ONLINE QOS PREDICTION FOR RUNTIME SERVICE ADAPTATION VIA ADAPTIVE MATRIX FACTORIZATION 2913



adaptation polices; 3) a service manager that performs service
discovery and interface mediation; and 4) a QoS manager
for QoS collection and prediction. Readers may refer to [14]
for a taxonomy (plus an example framework) that provides
detailed characterization of the design space of runtime adap-
tationmeachnisms fromdifferent dimensions. Themain focus
of this paper, however, is on QoS collection and prediction.

Previously, we have developed a collaborative QoS col-
lection framework, called WSRec [49], where users can sub-
mit historical QoS data on the services they have invoked
and obtain QoS prediction results on other unused services
in return. To work around the problem that some users may
not want to provide their historical QoS data, we propose a
new QoS collection framework as shown in Fig. 3. The
framework can enrich the QoS data collection by synthetic
monitoring in commercial services. For example, Dyna-
trace2 provides tens of thousands of monitoring agents at a
world-wide scale, across different Internet service providers
for active performance measurements. We can easily take
advantage of these commercial monitoring services to per-
form large-scale QoS measurements of services, where each
synthetic user may represent a group of real users located
in the same network. Within this QoS collection framework,
we can make accurate QoS predictions for real users, while
reducing the cost of full-mesh QoS measurements.

4 ONLINE QOS PREDICTION

In this section, we formalize the online QoS prediction prob-
lem, and then highlight the challenges to address. Finally,
we present our adaptive matrix factorization approach.

4.1 Problem Description

Fig. 4 illustrates the problem setting of online QoS predic-
tion. To serve user requests, service invocations (denoted by
dashed lines) are performed to fulfill certain application
logic. Different applications may invoke some services in
common and some other services differently according to
their functionality needs. A number of candidate services
exist for each component service, which allows dynamically
replacing a service with another. Service invocations and
adaptation actions are supported by an underlying middle-
ware, which is able to track every service invocation and
record the corresponding QoS value perceived by the user.
Fig. 4d depicts a number of QoS records from different
users during historical service invocations. Each record rep-
resents a user-observed QoS value of a service along with

its timestamp. In a practical setting, we represent time as
consecutive time slices. Typically, each user only invokes a
small set of candidate services at one time, while many
others are not invoked, leading to unknown QoS values. All
the QoS records can be further assembled into a 3D (user-
service-time) QoS matrix as shown in Fig. 4e, where grey
entries represent observed QoS values and blank entries are
unknown. To make optimal service adaptation decisions,
we need real-time QoS information of not only working
services but also all candidate services. Therefore, we for-
mulate online QoS prediction of candidate services as a
problem to predict the unknown QoS values at the current
time slice given all historical QoS records. By contrasting
Fig. 4e to Fig. 1b, we emphasize that our online QoS predic-
tion problem differs from the existing problem setting
described in Section 2.3, as we aim for an online solution to
track real-time QoS values. More precisely:

Suppose there are n users, and m services. A QoS record
RijðtÞ 2 Rn�m represents the QoS value of user ui invoking ser-
vice sj at time slice t. We denote IijðtÞ ¼ 1 for an observed entry,
and IijðtÞ ¼ 0 for an unknown entry. Then the unknown entries

fRijðtcÞjIijðtcÞ ¼ 0g at current time slice tc should be predicted
based on all the historically observed entries fRijðtÞjIijðtÞ ¼
1; t 2 ½1; . . . ; tc�g.

4.2 Challenges

Runtime service adaptation necessitates the problem of
online QoS prediction with a set of unique challenges.

1) Accuracy: Ensuring accuracy of QoS prediction is
fundamental for runtime service adaptation. Inaccu-
rate predictions may lead to execution of improper
adaptations or missed adaptation opportunities,
thus resulting in unintended SLA violations.

2) Efficiency: At runtime, existing QoS values will be
continuously updated with newly observed values,
or become expired after a time period without
updating. In order to adapt to continous QoS
changes, QoS prediction should be performed effi-
ciently in an online manner.

3) Robustness: New services with different QoS values
may become available, and existing services may be
discontinued by their providers. Likewise, service
users may often join or leave the environment. QoS
prediction approaches should be robust against high
churning of users and services.

These unique challenges make the online QoS predic-
tion problem different from rating prediction in recom-
mender systems. The conventional matrix factorization
model, as described in Section 2.4, suffers from the fol-
lowing limitations when applied directly to online QoS
prediction: 1) While rating data typically have coherent
value distributions, QoS value distributions are highly
skewed with large variances, which mismatches with the
underlying assumption for low-rank matrix factorization.
2) Different from rating values that keep unchanged
once being rated, QoS values are often time-varying. The
conventional MF model primarily works offline and fails
to adapt to continuous QoS values changes. 3) The MF
model focuses on the user-service QoS matrix with a
fixed size (w.r.t. fixed users and services), which cannot

Fig. 3. A framework for collaborative QoS collection.

2. https://www.dynatrace.com
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handle churning of users and services without a heavy
re-training process.

4.3 Adaptive Matrix Factorization

To address the above challenges, we propose a new QoS
prediction approach, adaptive matrix factorization. AMF
is developed based on the conventional MF model, but
significantly extends it in terms of accuracy, efficiency,
and robustness. Specifically, AMF integrates a set of tech-
niques such as Box-Cox transformation, online learning,
and adaptive weights. Fig. 5 presents an illustration of
online QoS prediction by AMF. Different from MF shown
in Fig. 1, our AMF approach collects observed QoS
records as a data stream (Fig. 5a). The QoS stream first
undergoes a data transformation process for normaliza-
tion. Then the normalized QoS records are sequentially
fed into the AMF model for online updating (Fig. 5b),
which is a continuous model training process armed with
online learning techniques. Intuitively, AMF works as an
iterative version of MF models over consecutive time sli-
ces, as shown in Fig. 5c, where the model trained at the
previous time slice are seamlessly leveraged to bootstrap
the next one. Finally, the trained model is utilized to
make runtime QoS predictions (Fig. 5d).

4.3.1 Data Transformation

Due to our observation on a real-world QoS dataset, we find
that different from the coherent value range of ratings (e.g.,
1 � 5 stars) in recommender systems, QoS values can vary

widely (e.g., 0 � 20 s for response time and 0 � 7;000 kbps
for throughput). Moreover, the distributions of QoS data
are highly skewed with large variances (see Fig. 7) com-
pared to typical rating distributions, which mismatches
with the probabilistic assumption for low-rank matrix fac-
torization [40]. This would degrade the prediction accuracy
of MF-based approaches.

To handle this problem, we apply a data transformation
method, namely Box-Cox transformation [39], to QoS data.
This technique is used to stabilize data variance and make
the data more normal distribution-like in order to fit the
matrix factorization assumption. The transformation is
rank-preserving and performed by using a continuous func-
tion defined as follows:

boxcoxðxÞ ¼ ðxa � 1Þ=a ifa 6¼ 0;
log ðxÞ ifa ¼ 0;

�
(2)

where the parameter a controls the extent of the transforma-
tion. Note that we have bmax ¼ boxcoxðRmaxÞ and
bmin ¼ boxcoxðRminÞ due to the monotonously nondecreas-
ing property of Box-Cox transformation. Rmax and Rmin are
the maximal and minimal QoS values respectively, which
can be specified by users (e.g., Rmax ¼ 20 s and Rmin ¼ 0 for
response time in our experiments). bmax and bmin are the
maximal and minimal values after data transformation.
Given a QoS value RijðtÞ w.r.t. user ui, service sj, and time
slice t, we can map it into the range ½0; 1� by the following
normalization,

Fig. 5. An illustration of online QoS prediction by adaptive matrix factorization.

Fig. 4. The problem setting of online QoS prediction.
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rijðtÞ ¼
�
boxcoxðRijðtÞÞ � bmin

���
bmax � bmin

�
: (3)

Especially, when a ¼ 1, the data transformation is relaxed to
a linear normalization, where the effect of Box-Cox transfor-
mation is masked.

4.3.2 Model Formulation

In traditional QoS modeling [46], QoS attributes of services
are usually defined as service-specific values, because they
depend heavily on service-specific factors, such as resource
capacities (e.g., CPU, memory, and I/O operations) and ser-
vice loads. To capture the influence of service-specific fac-
tors, we denote qsj as the QoS bias specific to service sj. On
the other hand, many QoS attributes (e.g., response time
and throughput) rely on user-specific factors, such as user
locations and device capabilities. We thus denote qui as the
QoS bias specific to user ui. In addition, QoS is highly
dependent on the environment connecting users and serv-
ices (e.g., the network performance). In the preliminary con-
ference version [51], we have obtained encouraging results
by modeling QoS as UT

i Sj, which captures the environmen-
tal influence between user ui and service sj. In summary,
QoS values can be jointly characterized by a user-specific
part (qui ), a service-specific part (qsj ), and the interaction
between a user and a service (UT

i Sj). Herein, we generalize
the QoS model as a unified one

R̂ijðtÞ ¼ quiðtÞ þ qsjðtÞ þ UiðtÞTSjðtÞ; (4)

which represents the QoS between user ui and service sj at
time slice t. We emphasize that R̂ijðtÞ is a linear combination
of the above three parts without a weighting factor before
each term; this is because quiðtÞ, qsjðtÞ, and UiðtÞTSjðtÞ are all
unknown model parameters to be trained, which can be
equally seen as the ones scaled by the corresponding
weights. In particular, the above QoS model is relaxed to
the one proposed in [51] when setting quiðtÞ = qsjðtÞ = 0.

To fit the normalized QoS data rijðtÞ, we employ the
logistic function gðxÞ ¼ 1=ð1þ e�xÞ to map the value R̂ijðtÞ
into the range of [0, 1], as similarily done in [40]. By apply-
ing our QoS model in Equation (4), we rewrite the loss func-
tion in Equation (1) as follows:

LðtÞ ¼ 1

2

X
i;j

IijðtÞðrijðtÞ � gijðtÞÞ2

þ �

2

X
i

UiðtÞk k22 þ
X
j

SjðtÞ
�� ��2

2
þ
X
i

quiðtÞ2 þ
X
j

qsjðtÞ2
 !

;

(5)

where gijðtÞ denotes gðR̂ijðtÞÞ for simplicity. We denote
IijðtÞ ¼ 1 if rijðtÞ is observed, and IijðtÞ = 0 otherwise.

However, the conventional matrix factorization model,
as indicated in Section 2.4, minimizes the sum of squared
errors and employs the absolute error metrics, e.g., mean
absolute error (MAE), for prediction accuracy evaluation. In
fact, absolute error metrics are not suitable for evaluation of
QoS prediction because of the large value range of QoS val-
ues. For instance, given two services with QoS values qs1 = 1
and qs2 = 100, the corresponding thresholds for adaptation
action are set to qs1 > 5 and qs2 < 90. Suppose there are

two sets of prediction results: (a) qs1 = 8 and qs2 ¼ 99, (b)
qs1 ¼ 0.9 and qs2 ¼ 92, we would choose (a) with smaller
MAE. However, prediction (a) will cause a wrong adapta-
tion action because qs1 > 5, while prediction (b) is more rea-
sonable. Consequently, we propose to minimize relative
errors of QoS predictions, where the corresponding loss
function is derived as follows:

LðtÞ ¼ 1

2

X
i;j

IijðtÞ rijðtÞ � gijðtÞ
rijðtÞ

	 
2

þ �

2

X
i

UiðtÞk k22 þ
X
j

SjðtÞ
�� ��2

2
þ
X
i

quiðtÞ2 þ
X
j

qsjðtÞ2
 !

:

(6)

By summing LðtÞ over all historical time slices, we intend to
minimize the following global loss function: L ¼Ptc

t¼1 LðtÞ.

4.3.3 Adaptive Online Learning

Gradient descent, as described in Section 2.4, can be used to
solve the above minimization problem. But it typically
works offline (with all data assembled), thus cannot easily
adapt to time-varying QoS values. Online learning algo-
rithms are required to keep continuous and incremental
updating using the sequentially observed QoS data. For this
purpose, we employ a widely-used online learning algo-
rithm, stochastic gradient descent (SGD) [41], to train our
AMF model. For each QoS record (t; ui; sj; rijðtÞ) observed at
time slice t when user ui invokes service sj, we have the fol-
lowing pointwise loss function

DL ¼ 1

2

rij � gij
rij

	 
2

þ �

2
ð Uik k22 þ Sj

�� ��2
2
þ q2ui þ q2sjÞ; (7)

such that L =
Ptc

t¼1
Pn

i¼1
Pm

j¼1 IijðtÞDL, the summation over
all observedQoS records. Note that for simplicity, we hereaf-
ter abbreviate rijðtÞ; gijðtÞ; UiðtÞ; SjðtÞ; quiðtÞ; qsjðtÞ by omit-
ting the “ðtÞ” part. Instead of directly minimizing L, SGD
relaxes to sequentially minimize the pointwise loss function
DL over the QoS stream.More precisely, with random initial-
izations, the AMF model keeps updating on each observed
QoS record (t; ui; sj; rijðtÞ) via the following updating rules

Ui  Ui � h½ðgij � rijÞg0ijSj

�
r2ij þ �Ui�; (8)

Sj  Sj � h½ðgij � rijÞg0ijUi

�
r2ij þ �Sj�; (9)

qui  qui � h½ðgij � rijÞg0ij
�
r2ij þ �qui �; (10)

qsj  qsj � h½ðgij � rijÞg0ij
�
r2ij þ �qsj �; (11)

where g0ij denotes g0ðUT
i SjÞ, and g0ðxÞ ¼ ex=ðex þ 1Þ2 is the

derivative of gðxÞ. h is the learning rate controlling the step
size of each iteration.

As illustrated in Figs. 5a and 5b, whenever a new QoS
record is observed, user ui can take a small change on the
feature vectors Ui and qui , while service sj can have a small
change on the feature vectors Sj and qsj . The use of online
learning, which obviates the requirement of retraining the
whole model, enables the AMF model to adapt quickly to
new QoS observations and allows for easy incorporation of
new users and new services.
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However, the above online learning algorithm might not
perform well under the high churning rate of users and
services (i.e., continuously joining or leaving the environ-
ment). The convergence is controlled by the learning rate h,
but a fixed h will lead to problems caused by new users and
services. For example, for a new user u1, if its feature vectors
U1 and qu1 are at the initial positions, larger h is needed to
help them move quickly to the correct positions. But for an
existing service s2 that user u1 invokes, its feature vectors S2

and qs2 may have already converged. Adjusting the feature
vectors of service s2 according to user u1, which has a large
prediction error with unconverged feature vectors, is likely
to increase prediction error rather than to decrease it. Con-
sequently, our AMF model, if performed online, needs to be
robust against the churning of users and services.

To achieve this goal, we propose to employ adaptive
weights to control the step size when updating our AMF
model. Intuitively, an accurate user should not move much
according to an inaccurate service while an inaccurate user
need to move a lot with respect to an accurate service, and
vice versa. For example, if service s1 has an inaccuracy of 10
percent and service s2 with inaccuracy 1 percent, when a
user invokes both s1 and s2, it should move less for its fea-
ture vector to service s1 compared with service s2. We
denote the average error of user ui as eui and the average
error of service sj as esj . Accordingly, we set two weights
wui and wsj for user ui and service sj respectively, to control
the robustness between each other. Namely,

wui ¼ eui=ðeui þ esjÞ; wsj ¼ esj=ðeui þ esjÞ: (12)

Note that wui þ wsj ¼ 1. To update eui ; esj , we apply the
exponential moving average [1], which is aweighted average
withmoreweight (controlling by b) given to the latest data

eui ¼ bwuieij þ ð1� bwuiÞeui ; (13)

esj ¼ bwsjeij þ ð1� bwsjÞesj ; (14)

where eij denotes the relative error of a QoS record, between
gij and rij

eij ¼ rij � gij
�� ���rij: (15)

After obtaining the updated weights wui and wsj at each
iteration, we finally refine Equations (8)�(11) to the follow-
ing updating rules

Ui  Ui � hwui ½ðgij � rijÞg0ijSj

�
r2ij þ �Ui�; (16)

Sj  Sj � hwsj ½ðgij � rijÞg0ijUi

�
r2ij þ �Sj�; (17)

qui  qui � hwui ½ðgij � rijÞg0ij
�
r2ij þ �qui �; (18)

qsj  qsj � hwsj ½ðgij � rijÞg0ij
�
r2ij þ �qsj �: (19)

With Ui, Sj, qui , and qsj obtained at current time slice tc, we
can predict, according to Equation (4), the unknown QoS
value RijðtcÞ (where IijðtcÞ ¼ 0) for an ongoing service invo-
cation between user ui and service sj at tc. Meanwhile, a
backward data transformation of gðR̂ijðtcÞÞ is required,
which can be computed according to the inverse functions
for Equations (2) and (3).

4.3.4 Algorithm Description

Algorithm 1 provides the pseudo code of our AMF
approach. Specifically, at each iteration, the newly
observed QoS data are collected to update the model
(lines 2�8), or else existing historical data are randomly
selected for model updating (lines 10�14) until conver-
gence. Especially, according to the steps described in Sec-
tions 4.3.1�4.3.3, the set of updating operations has been
defined as a function UPDATEAMFðt; ui; sj; RijðtÞÞ with
parameters set as a QoS data sample ðt; ui; sj; RijðtÞÞ. For a
newly observed data sample, we first check whether the
corresponding user or service is new, so that we can add
it to our model (lines 5�7) and keep updating its feature
vectors when more observed data are available for this
user or service (line 8). As such, our model can easily
scale to new users and services without re-training the
whole model. Another important point is that we check
whether an existing QoS record has expired (line 11), and
if so, discard this value (i.e., in line 14, we set IijðtcÞ = 0).
In our experiments, for example, we set the expiration
time interval to 15 minutes.

Algorithm 1. Adaptive Matrix Factorization

Input: Sequentially observed QoS stream: fðt; ui; sj; RijðtÞÞg;
and model parameters: �; h;b.

Output: Online QoS prediction results: fR̂ijðtcÞjIijðtcÞ ¼ 0g.
. by Equation (4)

1: repeat . Continuous updating
2: Collect newly observed QoS data;
3: if a new data sample ðtc; ui; sj; RijðtcÞÞ received then
4: Set IijðtcÞ  1;

. RijðtcÞ is observed at current time slice tc
5: if ui is a new user or sj is a new service then
6: Randomly initialize Ui 2 Rd, or Sj 2 Rd;
7: Initialize eui  1, or esj  1;
8: UPDATEAMF ðtc; ui; sj; RijðtcÞÞ;
9: else
10: Randomly pick a historical data sample:

ðt; ui; sj; RijðtÞÞ;
11: if tc � t < TimeInterval then
12: UPDATEAMF ðt; ui; sj; RijðtÞÞ;
13: else
14: Set IijðtcÞ  0;

.Historical data sample is obsolete
15: if converged then
16: Wait until new QoS data observed;
17: until forever
18: function UPDATEAMF ðt; ui; sj; RijðtÞÞ
19: Normalize rijðtÞ  RijðtÞ; . by Equations (2) and (3)
20: Update wui  ðeui ; esjÞ, and wsj  ðeui ; esjÞ;

. by Equation (12)
21: Compute eij  ðrijðtÞ; gijðtÞÞ; . by Equation (15)
22: Update eui  ðwui ; eij; euiÞ, and esj  ðwsj ; eij; esjÞ;

. by Equations (13) and (14
23: Update quiðtcÞ; qsjðtcÞ; UiðtcÞ; SjðtcÞ simutaneously;

. by Equations 16�19

5 EVALUATION

In this section, we conduct a set of experiments on a QoS
dataset of real-world Web services to evaluate our AMF
approach from various aspects, including prediction

ZHU ETAL.: ONLINE QOS PREDICTION FOR RUNTIME SERVICE ADAPTATION VIA ADAPTIVE MATRIX FACTORIZATION 2917



accuracy, efficiency, robustness, and parameter analysis. We
implement our AMF algorithm as well as the baseline
approaches using C++, and further wrap up the code as a
Python package for ease of use. The package consists of
over 1,000 lines of code in total. All the experiments were
conducted on a Linux server with Intel Xeon E5-2670v2
CPU and 128 G DDR3 1,600 RAM, running 64-bit Ubuntu
14.04.2 with Linux kernel 3.16.0. Note that all the source
code has been publicly released and well documented for
reproducible research.

5.1 Data Description

In our experiments, we focus on two QoS attributes,
response time (RT) and throughput (TP), both of which are
important in characterizing the non-functional quality
aspects of services. Response time stands for the time dura-
tion between user sending out a request and receiving a
response, while throughput denotes the data transmission
rate (e.g., kbps) of a user invoking a service.

We use a publicly-available QoS dataset of real-world
Web services, namely WS-DREAM [8], previously collected
by our group. The dataset has been widely used in the
research community since its release. It consists of about
40.9 million QoS records, with response time and through-
put values recorded during the service invocations
between 142 users and 4,500 Web services over 64 consecu-
tive time slices, at an interval of 15 minutes. Specifically,
the 142 users are set on PlanetLab3 nodes distributed in
22 countries, and the services are 4,500 publicly accessible
real-world Web services crawled from the Internet, which
are hosted at 57 countries.

Fig. 6 provides some basic statistics of our data. Both QoS
attributes have a wide value range: the response time has a
range of 0� 20s (1:33s on average), and the throughput
ranges in 0 � 7;000 kbps (11.35 kbps on average). We fur-
ther plot the data distributions of response time and
throughput in Fig. 7. For better visualization, we cut off the
response time beyond 10 s and the throughput more than
150 kbps. It is shown that the data distributions are highly
skewed. In contrast, as shown in Fig. 8, we obtain more nor-
mal data distributions through our data transformation in
Section 4.3.

In addition, we investigate the singular values of the data
matrices of response time and throughput. The singular val-
ues are computed by singular value decomposition (SVD) [5]
and then normalized so that the largest singular value is
equal to 1. Fig. 9 presents the singular values in descending
order. We can observe that most of the singular values,
except the first few ones, are close to 0. This observation indi-
cates that both response-time and throughput data matrices
are approximately low-rank, which complies with the low-
rank assumption of matrix factorization. In our experiments,
we set the rank d ¼ 10 by default.

5.2 Evaluation Metrics

We evaluate the prediction accuracy of our AMF approach
in comparison with other baseline approaches by using the
following metrics.

� MRE (Median Relative Error). MRE takes the median
value of all the pairwise relative errors:

MRE ¼ median
IijðtÞ¼0

n
R̂ijðtÞ �RijðtÞ
�� ��.RijðtÞ

o
; (20)

where RijðtÞ is the real QoS value and R̂ijðtÞ is the
corresponding predicted value.

� NPRE (Ninety-Percentile Relative Error). NPRE
takes the 90th percentile of all the pairwise relative
errors.

Due to the large variance of QoS values, our optimization
efforts are focused more on relative error metrics, which
indicate appropriate for QoS prediction evaluation as men-
tioned in Section 4.3.2.

5.3 Accuracy Comparison

In order to evaluate the effectiveness of AMF, we compare
the prediction accuracy of AMF against a baseline approach
and four other approaches that are deemed potential in QoS

Fig. 6. Data statistics.

Fig. 7. Data distribution.

Fig. 8. Transformed distribution.

Fig. 9. Sorted singular values.

3. PlanetLab (https://www.planet-lab.org) is a global open plat-
form for distributed systems research.
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prediction [47], [48], [49], [50]. Although these approaches
are not originally proposed for runtime service adaptation,
we include them for comparison purposes.

� Average: This baseline approach uses the average
QoS value at each time slice as the prediction result.
The baseline is a simple QoS prediction method
without any optimization incorporated.

� UIPCC: User-based collaborative filtering approach
(namely UPCC) employs the similarity between users
to predict theQoS values, while item-based collabora-
tive filtering approach (namely IPCC) employs the
similarity between services to predict the QoS values.
UIPCC is a hybrid approach proposed in [49], by
combing both UPCC and IPCC approaches to make
full use of the similarity information between users
and the similarity information between services for
QoS prediction.

� PMF: This is a widely-used implementation of the
matrix factorization model [40]. As introduced in
Section 2.4, PMF has been applied to offline QoS pre-
diction in [50]. For our online QoS prediction prob-
lem, we apply PMF to the observed QoS matrix
independently at each time slice.

� WSPred: This approach [48] solves time-aware QoS
predictions of Web services by taking into account
the time information. It leverages the tensor factori-
zation model [26], based on a generalization of low-
rank matrix factorization, to represent the 3D (user-
service-time) QoS matrix.

� NTF: Non-negative tensor factorization (NTF) is an
approach recently proposed in [47], which further
extends WSPred with non-negative constraints on
the tensor factorization model for time-aware QoS
prediction.

As we mentioned before, QoS matrix collected from prac-
tical usage data is usually very sparse (i.e., most of the
entries RijðtÞ are unknown), because of the large number of
candidate services as well as the high cost of active service
measurements. To simulate such a sparse situation in prac-
tice, we randomly remove entries of our full QoS dataset so
that each user only keeps a few available historical QoS
records at each time slice. In particular, we vary the data

density from 5 to 30 percent at a step increase of 5 percent.
Data density = 5 percent, for example, indicates that each
user invokes 5 percent of the candidate services, and each
service is invoked by 5 percent of the users.

For AMF approach, the remaining data entries are ran-
domized as a QoS stream for training, while the removed
entries are used as the testing data to evaluate the prediction
accuracy. In this experiment, we set the parameters d ¼ 10,
� ¼ 0:001, b ¼ 0:3, and h ¼ 0:8. Especially, the parameter of
Box-Cox transformation, a, can be automatically tuned
using the Python API, scipy:stats:boxcox [4]. Note that the
parameters of the competing approaches are also optimized
accordingly to achieve their optimal accuracy on our data.
Under a specified data density, each approach is performed
20 times with different random seeds to avoid bias, and the
average results are reported.

Table 1 provides the prediction accuracy results in terms
of MRE and NPRE. We can observe that our AMF approach
achieves the best accuracy results (marked in bold) among
all the others. The “Improve” columns show the correspond-
ing improvements averaging over different data densities,
each measuring the percentage of how much AMF outper-
forms the other existing approach. For response time (RT)
attribute, AMF achieves 41.5�81.2 percent improvements
on MRE and 66.2�87.5 percent improvements on NPRE.
Likewise, for throughput (TP) attribute, AMF has 16.5�79.6
percent MRE improvements and 55.0�93.2 percent NPRE
improvements. In particular, the baseline method, Average,
has the worst accuracy on RT data, since no optimization is
incorporated. UIPCC attains better accuracy on RT, but
results in the worst accuracy on TP data. This is because
UIPCC, as a basic collaborative filtering approach, is sensi-
tive to the large variance of TP data. The conventional MF
model, PMF, obtains consistently better accuracy than Aver-
age and UIPCC, as reported in [50]. Meanwhile, WSPred
and NTF further improve PMF by considering time-aware
QoS models with tensor factorization. However, none of
these existing models deals with the large variance of QoS
data. They all yield high NPRE values, which is not suitable
for QoS prediction problem. Our AMF model can be seen as
an extension of the conventional collaborative filtering mod-
els, by taking into account the characteristics of QoS attrib-
utes, which thereby produces good accuracy results.

TABLE 1
QoS Prediction Accuracy (Smaller MRE and NPRE Indicate Better Accuracy)

QoS Methods
MRE NPRE

D ¼ 5% D ¼ 10% D ¼ 15% D ¼ 20% D ¼ 25% D ¼ 30% Improve D ¼ 5% D ¼ 10% D ¼ 15% D ¼ 20% D ¼ 25% D ¼ 30% Improve

RT

Average 1.405 1.414 1.417 1.419 1.420 1.421 81.2% 7.347 7.352 7.354 7.356 7.355 7.356 87.5%

UIPCC 0.748 0.644 0.580 0.551 0.533 0.518 54.9% 6.381 5.387 4.663 4.322 4.116 3.961 80.5%

PMF 0.580 0.522 0.523 0.524 0.523 0.521 49.9% 2.264 2.785 2.964 3.032 3.054 3.055 67.3%

WSPred 0.485 0.478 0.466 0.460 0.462 0.445 42.8% 3.103 2.876 2.628 2.592 2.658 2.474 66.2%

NTF 0.470 0.462 0.458 0.452 0.449 0.442 41.5% 3.032 2.983 2.965 2.962 2.970 2.839 69.0%

AMF 0.304 0.275 0.263 0.257 0.252 0.249 - 1.014 0.934 0.908 0.893 0.883 0.876 -

TP

Average 0.562 0.563 0.563 0.563 0.563 0.563 52.8% 7.615 7.659 7.671 7.675 7.678 7.682 87.3%

UIPCC 1.500 1.434 1.373 1.262 1.161 1.097 79.6% 15.042 15.063 14.936 14.286 13.624 13.258 93.2%

PMF 0.508 0.462 0.453 0.442 0.431 0.419 41.5% 1.649 2.130 2.343 2.424 2.444 2.436 55.0%

WSPred 0.321 0.315 0.318 0.320 0.317 0.316 16.5% 2.319 2.453 2.507 2.551 2.573 2.585 60.7%

NTF 0.329 0.321 0.320 0.317 0.318 0.316 17.2% 2.363 2.440 2.434 2.448 2.464 2.395 59.7%

AMF 0.320 0.278 0.260 0.250 0.244 0.241 - 1.135 1.003 0.956 0.934 0.920 0.911 -
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5.4 Effect of QoS Modeling

In this section, we intend to evaluate the effectiveness of the
unified QoS model, as presented in Equation (4), which con-
sists of a user-specific part (i.e., qu), a service-specific part
(i.e., qs), and the part characterizing the interaction between
a user and a service (i.e., UTS). Concretely, we employ each
part individually as a separate QoS model to make QoS pre-
dictions. Fig. 10 presents the MRE results corresponding to
response time and throughput data. The results show that
qu produces the worst accuracy. This is because user-specific
QoS modeling cannot capture the properties of QoS attrib-
utes that are more or less associated with services in prac-
tice. Meanwhile, qs, as the conventional QoS model,
considers only service-specific factors but ignores user-spe-
cific factors, thus suffering from inaccuracy in QoS model-
ing as well. In contrast, UTS, which is the QoS model we
proposed in the preliminary conference version of this
work [51], obtains decent accuracy results. It is an effective
QoS model because both user-specific and service-specific
factors are successfully incorporated via a low-rank matrix
factorization model. In this paper, based on our unified QoS
model, AMF outperforms the previous version in [51], with
an average of 9.2 percent MRE improvement on response-
time data and an average of 20.7 percent MRE improvement
on throughput data. Especially, the improvement in
Fig. 10b is larger than that in Fig. 10a since qs obtains a better
result on throughput data. This indicates the positive effect
of qu and qs on accuracy improvements.

5.5 Effect of Data Transformation

In Fig. 8, as shown before, we have visualized the effect of
data transformation on data distributions. To further evalu-
ate the effect of data transformation, we compare the predic-
tion accuracy among three different data processing
methods: raw data without normalization, linear normaliza-
tion, and data transformation. Our data transformation
method works as a combination of Box-Cox transformation
in Equation (2) and linear normalization in Equation (3).
Especially, when a = 1, our data transformation is relaxed to
a linear normalization procedure, since the effect of the func-
tion boxcoxðxÞ is masked. In this experiment, the parameter a
is automatically tuned to�0:007 for response time and�0:05
for throughput. We then vary the data density and compute
the corresponding MRE values. The results are presented in
Fig. 11. We can observe that the three data processing meth-
ods have different effects on prediction accuracy. More spe-
cifically, the model trained on raw data suffers from the data
skewness problem, resulting in large MRE. The linear nor-
malization method improves the prediction accuracy of

response time, but has a negative effect on the prediction
accuracy of throughput. We speculate that this is caused by
the extreme skewness of throughput data (Fig. 7). The linear
normalization narrows down the QoS value range, and to
some extent exacerbates the data skewness. However, AMF
mitigates this issue with Box-Cox transformation, and there-
fore, improves a lot inMRE.

5.6 Effect of Data Density

In our experiments, we simulate the sparse situation in real-
ity by randomly removing QoS samples of the dataset. We
set the parameter of data density (i.e., the percentage of data
preserved) to control the sparsity of QoS data. To present a
comprehensive evaluation of the effect of data density on
prediction accuracy, we vary the data density from 5 to 50
percent at a step increase of 5 percent. We also set the other
parameters as in Section 5.3. Fig. 12 illustrates the evaluation
results in terms of MRE and NPRE. We can observe that the
prediction accuracy improves with the increase of data den-
sity. The improvement is significant especially when the QoS
data is excessively sparse (e.g., 5 percent). This is because the
QoS predictionmodel likely falls into the overfitting problem
given only limited training data. With more QoS data avail-
able, the overfitting problem can be alleviated, thus better
prediction accuracy can be attained.

5.7 Efficiency Analysis

To evaluate the efficiency of our approach, we obtain the con-
vergence time of AMF at every time slice while setting data
density to 10 percent. As we can see in Fig. 13a, after the con-
vergence at the first time slice, our AMF approach then
becomes quite fast in the subsequent time slices, because
AMF keeps online updating with sequentially observed QoS
records. The convergence timemay sometimes fluctuate a lit-
tle bit (e.g., at time slice 57), due to the change of data charac-
teristics. We further compare the average convergence time
of AMF against the other four approaches: UIPCC, PMF,

Fig. 10. Effect of QoS modeling. Fig. 11. Impact of data transformation.

Fig. 12. Effect of data density.
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WSPred, and NTF. As shown in Fig. 13b, we can find that all
these approaches are more computationally expensive than
AMF, because they need to re-train the whole model at each
time slice, which incurs high computational overhead
compared to the online algorithm. Especially, WSPred and
NTF, which are based on tensor factorization models, con-
sume the longest time for training. Therefore, these existing
approaches are more appropriate for one-time training as
used in traditional recommender systems.

5.8 Robustness Analysis

In face of the churning of users and services, coupled with
the rapid changes of QoS values, the AMF model needs to
be efficient in adapting to new changes and robust in mak-
ing accurate QoS predictions. In this section, we evaluate
the prediction accuracy on these new users and services, as
well as the robustness of the prediction results. For this pur-
pose, we track the average loss value along time, while add-
ing new QoS records of a new time slice every 10 seconds,
with the data density setting to 10 percent. The quick con-
vergence in Fig. 14a shows that AMF can adapt quickly to
new QoS observations at each time slice. We then simulate
the situation of new users and services using our dataset.
We randomly select 80 percent of users and services at time
slice 1 as existing users and services, and then train the
AMF model using the corresponding QoS data. After the
model converges, we add the remaining 20 percent of users
and services into the model at time t = 10. Fig. 14b indicates
that the MRE for the new users and services decreases rap-
idly after they join the model, while the MRE for existing
users and services still keeps stable. This implies the robust-
ness of our model to deal with new users and services.

6 CASE STUDY

In this section, we evaluate the effectiveness of our online
QoS prediction approach via a case study. Whereas a com-
plex application workflow is generally composed with a mix
of sequential, branch, loop, and parallel structures [46], for

ease of presentation, we focus only on the sequential struc-
ture in this case study. It is a common structure to represent
the critical path of an application workflow, thus determin-
ing end-to-end application performance. But it is worth not-
ing that our online QoS prediction approach can be used for
applications with other compositional structures as well.
Fig. 15 depicts a prototype application for flight ordering
with a simplified workflow composed of five abstract tasks.
Specifically, a customer begins with flight search (s1) by
sending a query to flight suppliers for available flight infor-
mation. Then the user can book a flight (s2), while the request
is sent to the corresponding supplier for flight reservation.
Next, the customer edits necessary passenger information
(s3), and sends an order confirmation request to the supplier
(s4). After confirmation, a payment transaction via online
payment services (e.g., Paypal) will be launched (s5). Upon
the payment, the flight purchase is completed.

For evaluation, we randomly choose 10 candidate Web
services for each abstract task from our dataset. We ignore
the potential issue of functional mismatch here, because it
will not make a difference to QoS evaluation. We consider
four application execution settings: 1) Static. Each task choo-
ses the best service according to inital QoS values, and
keeps fixed during the whole execution period. 2) Random.
Each task picks three best-performing candidate services
according to inital QoS values, and randomly replace the
slowest one with another when QoS degradation occurs.
3) Dynamic. We apply AMF to online QoS prediction and
use the prediction results (at matrix density = 10 percent in
Section 5.3) to support runtime service adaptation. That is,
each task dynamically chooses the best service according to
current QoS predictions. 4) Optimal. Assuming all QoS val-
ues are known a prior, each task selects the best service
accordingly at runtime. This is the optimal case of runtime
service adaptaton. Fig. 16a presents the representative result
of application response time under different execution set-
tings. In the figure, assuming the maximal acceptable
response time is 1 s, the static execution leads to many times
of SLA violations due to QoS fluctuations over time. Mean-
while, two SLA violations happen in the random setting. In
contrast, we achieve near-optimal application performance
with runtime service adaptaton in our dynamic setting,
reducing the 95th percentile response time from 2.3 s (static)

Fig. 13. Efficiency evaluation result.

Fig. 14. Robustness evaluation result.

Fig. 15. A prototype application for flight purchase.

Fig. 16. Case study result.
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and 0.8 s (random) to 0.4 s. To avoid bias in randomization,
we repeat the experiments for 100 times and report the aver-
age results (with standard deviations) on response time as
shown in Fig. 16b. We note that our runtime service adapta-
tion (i.e., dynamic) has made a 38 percent improvement over
the static setting and a 29 percent improvement over the ran-
dom setting. The small gap between dynamic and optimal,
however, is due to the inaccuracy in QoS prediction. These
results indicate that our online QoS prediction approach
can greatly facilitate successful runtime service adaptation.

7 DISCUSSION

In this section, we discuss the potential limitations of this
work and provide some directions for future work.

QoS Measurement versus QoS Prediction. One may argue
that active measurement (e.g., through invoking a service
periodically) is a straightforward way to determine QoS of a
service, since it is accurate and easy to implement. For exam-
ple, the popular distributed document management data-
base, MongoDB, supports replica selection with active
measurement [13]. In this case, however, typically only three
replicas exist. When making active measurements at large
scale, the measurement overheadwould become amain con-
cern. It is infeasible, for example, to ping each node in a large
CDN (potentially with thousands of nodes) to identify the
best one to serve a user request, because this would incur
prohibitive network overhead. Furthermore, many services
are not free, whichwill lead to additional cost of service invo-
cations. In our case study, active measurement needs a cost
of 3,200 (i.e., 5*10*64) times of service invocations. Our QoS
prediction approach, in contrast, reduces this cost by 90
when using prediction results at thematrix density of 10 per-
cent. This indicates a tradeoff between accuracy and mea-
surement cost. When services become available at a large
scale, QoS prediction will become a better fit.

Large-Scale QoS Collection. A QoS collection framework
capable of assembling QoS records from users in real time is
needed to support online QoS prediction and subsequent
service adaptation decisions. Our work is developed based
on underlying QoS collection, but we focus primarily on
processing and prediction of QoS values. We have previ-
ously developed a WSRec framework [49] for collaborative
QoS collection, where a set of QoS collector agents were
developed using Apache Axis and further deployed on the
global PlanetLab platform to collect QoS records of pub-
licly-available Web services at runtime. Section 3 provides a
possible extension of this framework to mitigate the case
that some users may not want to reveal their QoS data. In
addition, a privacy-preserving scheme is explored in [52] by
applying differential privacy techniques to dealing with
potential privacy issues of QoS collection from different
users. We also expect that a streaming data platform, e.g.,
Amaon Kinesis,4 is used to collect real-time QoS streams,
but we leave such an end-to-end integration of QoS collec-
tion and prediction for our future work.

Issues in Service Adaptation. In practice, there are many
issues to handle in order to fully support runtime service
adaptation, such as service discovery, QoS monitoring and
prediction, service interface mediation, adaptation decision

making, workflow reconfiguration, load balancing, etc. Each
aspect is a complex issue that deserves deep exploration. For
instance, service adaptation naturally brings up the problem
of how differences in service interfaces can be resolved at
runtime. Many studies (e.g., [34], [38]) have been devoted to
developing mediation adapters that can transparently map
abstract tasks to different target services. Meanwhile, our
work has not considered the congestion of load from differ-
ent users. In practice, when many users believe that a service
has goodQoS, they will quickly change to this service, which
may thus overload the service. Load balancing is desired to
mitigate this issue. The whole design space, however, is
obviously larger than that can be explored in a single paper.
Therefore, we do not aim to address all these issues but focus
only on the QoS prediction problem in this paper, which is
important yet less explored before.

Potential Improvements in QoS Prediction. The current
implementation of AMF works as a black-box approach to
capturing the inherent characteristics of historical QoS data.
But it is potential to further combine temporal information
of QoS for better modeling, for example, by using smooth-
ing techniques (e.g., exponential moving average [1]) to
reduce the weights of older QoS records or applying time
series techniques for change point detection. Furthermore,
it is possible to incorporate some other contextual informa-
tion. For example, users can be profiled and grouped by net-
work location, routing domain, region, etc., because users
within the same network more likely experience similar
QoS. These more sophisticated QoS models deserve further
exploration for improvements in prediction accuracy.
Besides, the current evaluations are all conducted offline on
our QoS dataset. It is desirable to carry out practical online
evaluations on real large-scale applications in future.

8 RELATED WORK

Runtime Service Adaptation. To achieve the goal of runtime
service adaptation, a large body of research work has been
conducted. Specifically, some work (e.g., [12], [35]) extends
BPEL execution engines (e.g., Apache ODE) with an inter-
ception and adaptation layer to enable monitoring and
recovery of services. Some otherwork (e.g., [14], [36]) investi-
gates feasible adaptation policies, such as replacing the com-
ponent services or re-structuring the workflows, to optimize
service adaptation actions. Moreover, a service manager
(e.g., [16]) is employed to discover all available candidate
services that match a specific need, while a QoS manager
(e.g., [49]) is used to monitor current QoS values of service
invocations and obtain necessary QoS prediction results. Dif-
ferent from most of these studies that focus on adaptation
mechanism design, our work aims to address the challenge
of online QoS prediction, which is also deemed critical to
effective runtime service adaptation as noted in [31].

QoS Prediction. Accurate QoS information is essential for
QoS-driven runtime service adaptation. Online testing, as
presented in [9], [32], is a straightforward way that actively
invokes services for QoS measurement. But this approach is
costly due to the additonal service invocations incurred,
especially when applied to a large number of candidate serv-
ices. In recent literature, online prediction approaches [10],
[45], which analyze historical QoS data using time series
models, have been proposed to detect potential service4. https://aws.amazon.com/kinesis
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failures and QoS deviations of working services. As for can-
didate services, Jiang et al. [23] propose a way of sampling to
reduce the cost of continously invoking candidate services.
Some other work proposes to facilitate Web service recom-
mendation with QoS prediction by leveraging techniques
such as collaborative filtering [49], matrix factorization [50],
tensor factorization [47], [48]. However, as we show in our
experiments, these approaches are insufficient, either in
accuracy or in efficiency, to meet the requirements posed by
runtime service adaptation. Our work is motivated to
address these limitations.

Collaborative Filtering. Recently, CF has been introduced
as a promising technique for many system engineering
tasks, such as service recommendation [17], [30], system
reliability prediction [50], and QoS-aware datacenter sched-
uling [20]. Matrix factorization is one of the most widely-
used models in collaborative filtering, which has recently
inspired many applications in other domains. In our previ-
ous work [53], we apply the MF model, along with efficient
shortest distance computation, to guide dynamic request
routing for large-scale cloud applications. Some other work
(e.g., [30], [50]) introduces MF as a promising model for
Web service recommendation. However, such direct uses of
the MF model, as we show in Section 5, are insufficient in
addressing the challenges in online QoS prediction of run-
time service adaptation. Therefore, our work is aimed to
extend the MF model in terms of accuracy, efficiency, and
robustness. The weighted matrix factorization has been
once studied in [42], but our approach differs from it in that
we apply adaptive weights instead of fixed weights in the
iteration process to maintain robustness of the model.

Online Learning. Online learning algorithms [3] are com-
monly used for training large-scale datasets where tradi-
tional batch algorithms are computationally infeasible, or in
situations where it is necessary to dynamically adapt the
models with the sequential arrival of data. Recently, the use
of online learning in collaborative filtering has received
emerging attention. In an early study [18], Google research-
ers solve the online learning problem of neighbourhood-
based collaborative filtering for google news recommenda-
tion. The following studies [27], [29] apply stochastic gradi-
ent descent, a randomized version of batch-mode gradient
descent, to optimizing the matrix factorization based formu-
lation of collaborative filtering in an online fashion. Some
other work (see the survey [24]) further explores the use of
parallel computing to speed up the algorithms. Inspired by
these successful applications, we propose adaptive online
learning, by customizing the widely-used stochastic gradi-
ent descent algorithm with adaptive learning weights, to
guarantee robust, online QoS prediction.

9 CONCLUSION

This is the first work targeting on predicting QoS of candi-
date services for runtime service adaptation. Towards this
end, we propose adaptive matrix factorization, an online
QoS prediction approach. AMF formulates QoS prediction
as a collaborative filtering problem inspired from recom-
mender systems, and significantly extends the traditional
matrix factorization model with techniques of data transfor-
mation, online learning, and adaptive weights. The evalua-
tion results, together with a case study, on a real-world QoS

dataset of Web services have validated AMF in terms of
accuracy, efficiency, and robustness.
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