
Towards Online, Accurate, and Scalable QoS
Prediction for Runtime Service Adaptation

[Supplementary Report]

Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
{jmzhu, pjhe, zbzheng, lyu}@cse.cuhk.edu.hk

Abstract—This report is provided as supplemental material
for our paper [1]. The content comprises three appendixes as fol-
lows: collaborative filtering, mathematical basics, and additional
experimental results.

APPENDIX A
COLLABORATIVE FILTERING

Collaborative filtering (CF) techniques are commonly used
in commercial recommender systems, such as movie recom-
mendation in Netflix1 and item recommendation in Amazon2.
The CF model has been widely studied in recent years. In
recommender systems, CF works for the rating prediction
problem. Specifically, users likely rate the items that they know
about, such as 1 ∼ 5 stars for the moives they have watched
or books they have read. As illustrated in Fig. 1, the values
in grey entries are observed rating data, and the blank entries
are unknown values. For example, the rating value between
user u1 and iterm i1 is 5, while the rating value between user
u1 and iterm i5 is missing, because u1 has not rated i5. In
practice, each user usually rate only a small set out of all of
the items, due to the large number of items. As a result, the
user-item rating matrix is very sparse.

0.2 ? 0.6 1.2 ?

? 0.3 ? 0.6 0.5

0.4 0.9 ? ? 0.7

0.8 ? 0.5 ? 0.4

2u

3u

4u

2s 3s 4s 5s
2u

4u

2s 3s 4s 5s

3u1u

1s

1u
1s

0.2 ? 0.6 1.2 ?

? 0.3 ? 0.6 0.5

0.4 0.9 ? ? 0.7

0.8 ? 0.5 ? 0.4

2u

3u

4u

2s 3s 4s 5s

1u
1s

QoS-based Service Selection

TU S

4 d

5d

5 ? 4 3 ?

? 2 ? 3 2

5 1 ? ? 1

4 ? 2 ? 4

1u

2u

3u

4u

1i 2i 3i 4i 5i
2u

4u

2s 3s 4s 5s

3u1u

1s

1.4 0.8 1.1 0.7 0.9

1.0 0.3 1.0 0.7 0.5

0.4 0.3 0.3 0.1 0.3

1.4 0.7 1.2 0.8 0.8

1u

2u

3u

4u

1s 2s 3s 4s 5s

(a) User-Service Invocation Graph (d) Predicted QoS Matrix

Fig. 1. An Example of Rating Prediction

The basic idea of CF is to exploit and model the observed
data to predict the unknown values, based on the insight
that similar users may have similar preferences on the same
item, and thus have similar ratings. To achieve this goal,
two types of CF techniques have been studied in recent
literature: neighbourhood-based approaches and model-based
approaches [2].

Neighbourhood-based approaches: Neighbourhood-
based approaches include user-based approaches (e.g.,
UPCC) that leverage the similarity between users, item-
based approaches (e.g., IPCC) that employ the similarity

1http://www.netflix.com
2http://www.amazon.com

between items, and their fusions (e.g., UIPCC [3]). However,
neighbourhood-based approaches are incapable of handling
the data sparsity problem and have high time complexity.

Model-based approaches: Model-based approaches pro-
vide a predefined compact model to fit the training data,
which can be further used to predict the unknown values.
Matrix factorization [4] is one of the most popular model-based
approaches used for collaborative filtering. In addition, matrix
factorization model can usually achieve better performance
than neighbourhood-based approaches.

APPENDIX B
MATHEMATICAL BASICS

This section provides some mathematical background for
our adaptive matrix factorization model.

A. Euclidean Norm

Euclidean norm ‖·‖2 is a vector norm. Given a vector V ∈
Rn, its Euclidean norm is defined as follows:

‖V ‖2 =

√√√√ n∑
i=1

v2i (1)

where vi is the element of V .

B. Frobenius Norm

Frobenius norm ‖·‖F is a matrix norm. Given a matrix
A ∈ Rn×m, its frobenius norm is defined as follows:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

a2ij (2)

where aij is the element of A. When A reduces to a vector,
the Frobenius norm is equivalent to the Euclidean norm.

C. Gradient Descent

Gradient descent is a widely used method to find a local
minimum of an object function in an iterative way. Note that in
our experiments, the approach PMF is implemented by using
gradient descent algorithm, as described in the following.

As for matrix factorization model, the object function is
given as follows:

L =
1

2

n∑
i=1

m∑
j=1

Iij(Rij − UT
i Sj)

2
+
λU

2
‖U‖2F +

λS

2
‖S‖2F , (3)

Algorithm 1: Gradient Descent for MF
Input: The collected QoS matrix R, the indication matrix I ,

and the model parameters: η, λU and λS . /* Iij = 1
if Rij is known; otherwise, Iij = 0 */

Output: The QoS prediction results: R̂ij , where Iij = 0.
1 Initialize U ∈ Rd×n and S ∈ Rd×m randomly;
2 repeat /* Batch-mode updating */
3 foreach (i, j) do /* Compute ∂L

∂Ui
and ∂L

∂Sj
*/

4 ∂L
∂Ui
←

m∑
j=1

Iij(U
T
i Sj −Rij)Sj + λUUi;

5 ∂L
∂Sj
←

n∑
i=1

Iij(U
T
i Sj −Rij)Ui + λSSj ;

6 foreach (i, j) do /* Update each Ui and Sj */
7 Ui ← Ui − η ∂L

∂Ui
;

8 Sj ← Sj − η ∂L
∂Sj

;

9 until converge;

10 foreach (i, j) ∈ {Iij = 0} do /* Make prediction */
11 R̂ij = UT

i Sj ;

where the definition of each symbol has been described in our
main paper [1]. Then gradient descent works by updating Ui

and Sj simultaneously from random initialization using the
following updating rules:

Ui ← Ui − η
∂L
∂Ui

, Sj ← Sj − η
∂L
∂Sj

, (4)

In particular, the derivatives of Ui and Sj can be derived from
Equation 3 as follows:

∂L
∂Ui

=

m∑
j=1

Iij(U
T
i Sj −Rij)Sj + λUUi, (5)

∂L
∂Sj

=

n∑
i=1

Iij(U
T
i Sj −Rij)Ui + λSSj . (6)

Hence, the updating rules in Equation 4 can be rewritten as
follows:

Ui ← Ui − η
(m∑

j=1

Iij(U
T
i Sj −Rij)Sj + λUUi

)
, (7)

Sj ← Sj − η
(n∑

i=1

Iij(U
T
i Sj −Rij)Ui + λSSj

)
. (8)

Gradient descent works on batch-mode, which needs all the
data to be available. The latent factors Ui and Sj move
iteratively by a small step of the average gradient, i.e., ∂L

∂Ui

and ∂L
∂Sj

, where the step size is controlled by η.

The detailed algorithm of gradient descent for MF is
presented in Algorithm 1.

D. Stochastic Gradient Descent

The scheme of stochastic gradient descent (SGD) is to
update the stochastically using the sequentially coming data.
At each step, the model can be adjusted by only considering the
current data sample. Thus, SGD naturally provides an online
algorithm, where we can adjust the model using each data
sample from the data stream in an online fashion.

Algorithm 2: Stochastic Gradient Descent for MF
Input: Sequentially observed QoS data samples: (ui, sj , Rij),

and the model parameters: η, λu and λs.
Output: The QoS prediction results: R̂ij , where Iij = 0.

1 Initialize U ∈ Rd×n and S ∈ Rd×m randomly;
2 repeat /* Online-mode updating */
3 foreach (ui, sj , Rij) do
4 ∂`

∂Ui
← (UT

i Sj −Rij)Sj + λuUi;

5 ∂`
∂Sj
← (UT

i Sj −Rij)Ui + λsSj ;

6 Ui ← Ui − η ∂`
∂Ui

;

7 Sj ← Sj − η ∂`
∂Sj

;

8 until converge;

9 foreach (i, j) ∈ {Iij = 0} do /* Make prediction */
10 R̂ij = UT

i Sj ;

Formally, The loss function L in Euqation 3 can be seen
as the sum of pairwise loss functions:

L =

n∑
i=1

m∑
j=1

Iij`(Ui, Sj), (9)

and the pairwise loss function `(Ui, Sj) with respect to
(Ui, Sj , Rij) is defined as

`(Ui, Sj) =
1

2
(Rij − UT

i Sj)
2
+
λu

2
‖Ui‖22 +

λs

2
‖Sj‖22 , (10)

Note that the regularization parameters λu and λs are on
different scale from those in Equation 3. Similarly, we can
derive the following updating equations for each iteration:

Ui ← Ui − η
(
(UT

i Sj −Rij)Sj + λuUi

)
, (11)

Sj ← Sj − η
(
(UT

i Sj −Rij)Ui + λsSj

)
. (12)

The detailed algorithm of stochastic gradient descent for
MF is presented in Algorithm 2.

APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS

A. Accuracy Comparison Results

Table I provides the overall accuracy comparison results,
which supplements the experimental results shown in our
main paper [1]. In particular, some experimental parameters
are revised to further optimize our AMF approach. In this
experiment, we set d = 10, β = 0.3, η = 0.8, λ = 0.0003 for
RT, λ = 0.0002 for TP, and the α is automatically tuned by
using the boxcox function in Matlab. At each time slice, each
approach is performed 20 times (with different random seeds)
for each matrix density. Then the average results over all the
time slices (i.e., 20× 64 times) are reported.

We can see that our AMF approach has significant im-
provement over the other approaches over MRE (>41.4% for
RT, >24.4% for TP) and NPRE (>65.5% for RT, >37.9% for
TP), while still achieving comparable (or best) results on MAE
(-0.3% ∼ 12.5% for RT, -7.8% ∼ 8.3% for TP).

TABLE I. ACCURACY COMPARISON (A SMALLER MAE, MRE OR NPRE VALUE MEANS BETTER ACCURACY)

Density = 10% Density = 20% Density = 30% Density = 40% Density = 50%
QoS Approach

MAE MRE NPRE MAE MRE NPRE MAE MRE NPRE MAE MRE NPRE MAE MRE NPRE

UPCC 0.8500 0.6484 5.4251 0.7696 0.5425 4.1452 0.7313 0.5054 3.7130 0.7050 0.4801 3.4341 0.6862 0.4610 3.2375
IPCC 0.9460 0.7761 5.7514 0.8977 0.7525 5.5029 0.8573 0.7109 5.2877 0.8238 0.6807 5.0301 0.7888 0.6446 4.7026

UIPCC 0.8482 0.6431 5.3820 0.7719 0.5510 4.3172 0.7332 0.5181 3.9556 0.7057 0.4944 3.6991 0.6843 0.4739 3.4904
PMF 0.8332 0.5283 2.8231 0.7731 0.5269 3.0672 0.7443 0.5237 3.1161 0.7265 0.5205 3.3160 0.7104 0.5099 3.0427
AMF 0.7288 0.3096 0.9728 0.7034 0.2807 0.8994 0.6936 0.2667 0.8667 0.6892 0.2587 0.8502 0.6863 0.2542 0.8414

RT

Imp.(%) 12.5% 41.4% 65.5% 8.9% 46.7% 70.7% 5.2% 47.2% 72.2% 2.2% 46.1% 74.4% -0.3% 44.9% 72.3%

UPCC 9.5011 1.6503 17.3322 8.4699 1.4134 16.8860 7.8835 1.2571 16.8194 7.5548 1.1595 16.8934 7.3504 1.0909 16.9664
IPCC 9.6634 0.7859 11.4606 8.9234 0.7124 10.4361 7.9731 0.6255 8.8113 7.4345 0.5855 8.0981 7.0241 0.5556 7.6114

UIPCC 9.3104 1.4363 15.0760 8.3855 1.2611 14.2780 7.5166 1.0947 13.2519 7.0149 1.0172 12.8740 6.6556 0.9628 12.6269
PMF 6.0431 0.4699 2.1754 5.6822 0.4477 2.4413 5.3076 0.4253 2.4966 5.0687 0.4012 2.4129 4.8068 0.3863 2.3976
AMF 5.5427 0.3551 1.3506 5.4356 0.3178 1.0622 5.2974 0.3007 0.9607 5.1901 0.2916 0.9244 5.1809 0.2854 0.9013

TP

Imp.(%) 8.3% 24.4% 37.9% 4.3% 29.0% 56.5% 0.2% 29.3% 61.5% -2.4% 27.3% 61.7% -7.8% 26.1% 62.4%

REFERENCES

[1] J. Zhu, P. He, Z. Zheng, and M. R. Lyu, “Towards online, accurate, and
scalable QoS prediction for runtime service adaptation,” in Proc. of the
34th IEEE International Conference on Distributed Computing Systems
(ICDCS), 2014.

[2] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Adv. Artificial Intellegence, 2009.

[3] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction for
collaborative filtering,” in Proc. of the 30th ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), 2007, pp.
39–46.

[4] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in
Proc. of of the 21st Annual Conference on Neural Information Processing
Systems (NIPS), 2007.

