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Abstract—This report is provided as supplemental material
for our paper [1]. The content comprises three appendixes as fol-
lows: collaborative filtering, mathematical basics, and additional
experimental results.

APPENDIX A
COLLABORATIVE FILTERING

Collaborative filtering (CF) techniques are commonly used
in commercial recommender systems, such as movie recom-
mendation in Netflix! and item recommendation in Amazon?.
The CF model has been widely studied in recent years. In
recommender systems, CF works for the rating prediction
problem. Specifically, users likely rate the items that they know
about, such as 1 ~ 5 stars for the moives they have watched
or books they have read. As illustrated in Fig. 1, the values
in grey entries are observed rating data, and the blank entries
are unknown values. For example, the rating value between
user u; and iterm ¢; is 5, while the rating value between user
w1 and iterm ¢5 is missing, because u; has not rated i5. In
practice, each user usually rate only a small set out of all of
the items, due to the large number of items. As a result, the
user-item rating matrix is very sparse.
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Fig. 1. An Example of Rating Prediction

The basic idea of CF is to exploit and model the observed
data to predict the unknown values, based on the insight
that similar users may have similar preferences on the same
item, and thus have similar ratings. To achieve this goal,
two types of CF techniques have been studied in recent
literature: neighbourhood-based approaches and model-based
approaches [2].

Neighbourhood-based approaches: Neighbourhood-
based approaches include wuser-based approaches (e.g.,
UPCC) that leverage the similarity between users, item-
based approaches (e.g., IPCC) that employ the similarity

Uhttp://www.netflix.com
Zhttp://www.amazon.com

between items, and their fusions (e.g., UIPCC [3]). However,
neighbourhood-based approaches are incapable of handling
the data sparsity problem and have high time complexity.

Model-based approaches: Model-based approaches pro-
vide a predefined compact model to fit the training data,
which can be further used to predict the unknown values.
Matrix factorization [4] is one of the most popular model-based
approaches used for collaborative filtering. In addition, matrix
factorization model can usually achieve better performance
than neighbourhood-based approaches.

APPENDIX B
MATHEMATICAL BASICS
This section provides some mathematical background for
our adaptive matrix factorization model.
A. Euclidean Norm

Euclidean norm ||-||, is a vector norm. Given a vector V' €
R™, its Euclidean norm is defined as follows:

V= | > v? (1)
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where v; is the element of V.

B. Frobenius Norm

Frobenius norm ||-|| > is a matrix norm. Given a matrix
A € R™*™ jts frobenius norm is defined as follows:

Al =D a? )
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where a;; is the element of A. When A reduces to a vector,
the Frobenius norm is equivalent to the Euclidean norm.

C. Gradient Descent

Gradient descent is a widely used method to find a local
minimum of an object function in an iterative way. Note that in
our experiments, the approach PMF is implemented by using
gradient descent algorithm, as described in the following.

As for matrix factorization model, the object function is
given as follows:

1 n m 9 )\ )\
£=353" 3 1Ry ~UIS;) + 0N+ IS5 @)

i=1 j=1



Algorithm 1: Gradient Descent for MF

Algorithm 2: Stochastic Gradient Descent for MF

Input: The collected QoS matrix R, the indication matrix I,
and the model parameters: , Ay and As. / I[;; =1
if R;; is known; otherWLSe, Iij =0 «/

Output: The QoS prediction results: R”, where [;; = 0.

1 Initialize U € R¥*™ and S € R**™ randomly;

2 repeat /+ Batch-mode updating =/
3 foreach (i, j) do /* Compute g—é and % */
4 glf — ZI”(U S ij)Sj—‘r)\UUi;
TL

5 g;l Zj J(UES; — Rij)Us + AsS;;

6 foreach (i, j) do /x Update each U; and S; =/
7 Ui < U; — 7]667;

8 S+ S _7735 ;

9 untll converge;
10 foreach (i, j) € {I;; =0} do /x Make prediction =/
11 L Rij = U?Sj;

where the definition of each symbol has been described in our
main paper [1]. Then gradient descent works by updating U;
and S; simultaneously from random initialization using the
following updating rules:
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In particular, the derivatives of U; and S; can be derived from
Equation 3 as follows:

L &
50 = ZIU(UiTSj — Ri;)S; + AvUs, o)

4 j=1
:Z]LJ(UZTSJ — Rij)U; + AsS;. (6)

Hence, the updating rules in Equation 4 can be rewritten as
follows:

Ui < Ui = (> 1 (UL S; = Rij)S; + AuUi), @)
j=1
S« S5 — n(ZIij(UiTSj — Ri;)U; + )\SSj). 8)

i=1

Gradient descent works on batch-mode, which needs all the
data to be available. The latent factors U; and S; move

iteratively by a small step of the average gradient, i.e., 385

and gsﬁ , where the step size is controlled by 7.

The detailed algorithm of gradient descent for MF is
presented in Algorithm 1.

D. Stochastic Gradient Descent

The scheme of stochastic gradient descent (SGD) is to
update the stochastically using the sequentially coming data.
At each step, the model can be adjusted by only considering the
current data sample. Thus, SGD naturally provides an online
algorithm, where we can adjust the model using each data
sample from the data stream in an online fashion.

Input: Sequentially observed QoS data samples: (u;, s;, Rij),
and the model parameters: 7, A, and As.
Output: The QoS prediction results: R;;, where I;; = 0.

1 Initialize U € R¥*™ and S € R¥*™ randomly;

2 repeat /+ Online-mode updating =*/
3 foreach (u;, s;, Ri;) do

4 867[51 — (UZTSJ — Rz‘j)Sj + Ui

5 a5,  (US; = Rij)Ui + As Sy

6 U; < U; — 770U ;

7 Sj+ S; — 1765 ;

8 until converge;

9 foreach (i, j) € {I;; =0} do /+ Make prediction =/
10 L Rij =UL'S;;

Formally, The loss function £ in Euqation 3 can be seen
as the sum of pairwise loss functions:
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and the pairwise loss function ¢(U;,S;) with respect to
(Ui, Sj, Rij) is defined as
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Ui, S;) = §(Rz‘j - Ul'S;)
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Note that the regularization parameters A, and A\ are on
different scale from those in Equation 3. Similarly, we can
derive the following updating equations for each iteration:

Ui < U; —n((U"S; — Riz)S; + MUs), (1
S; S5 — n((UTS; — Rij)Ui + AsS;). (12)

The detailed algorithm of stochastic gradient descent for
MF is presented in Algorithm 2.

APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS

A. Accuracy Comparison Results

Table I provides the overall accuracy comparison results,
which supplements the experimental results shown in our
main paper [1]. In particular, some experimental parameters
are revised to further optimize our AMF approach. In this
experiment, we set d = 10, § = 0.3, n = 0.8, A = 0.0003 for
RT, A = 0.0002 for TP, and the « is automatically tuned by
using the boxcox function in Matlab. At each time slice, each
approach is performed 20 times (with different random seeds)
for each matrix density. Then the average results over all the
time slices (i.e., 20 x 64 times) are reported.

We can see that our AMF approach has significant im-
provement over the other approaches over MRE (>41.4% for
RT, >24.4% for TP) and NPRE (>65.5% for RT, >37.9% for
TP), while still achieving comparable (or best) results on MAE
(-0.3% ~ 12.5% for RT, -7.8% ~ 8.3% for TP).



TABLE 1. ACCURACY COMPARISON (A SMALLER MAE, MRE OR NPRE VALUE MEANS BETTER ACCURACY)

Qos| A b Density = 10% Density = 20% Density = 30% Density = 40% Density = 50%
O3 APPIOAC | A E MRE  NPRE | MAE _ MRE _ NPRE | MAE  MRE _ NPRE | MAE  MRE _ NPRE | MAE _ MRE _ NPRE
UPCC || 0.8500 0.6484 54251 | 07696 05425  4.1452 | 0.7313 05054 37130 | 07050 04801 34341 | 0.6862 0.4610  3.2375
IPCC 09460 07761 57514 | 0.8977 0525 55029 | 0.8573 07109 52877 | 0.8238 0.6807 50301 | 0.7888 0.6446  4.7026
pp| UPCC || 08482 06431 53820 | 07719 05510 43172 | 07332 05181 3955 | 07057 04944 36991 | 0.6843 04739 34904
PMF 0.8332  0.5283  2.8231 | 07731 05269 3.0672 | 07443 05237  3.1161 | 07265 05205 3.3160 | 07104 05099  3.0427
AMF 0.7288 03096 09728 | 07034 02807  0.8994 | 0.6936 0.2667  0.8667 | 0.6892 0.2587  0.8502 | 0.6863 02542  0.8414
Imp(%) || 125%  414%  655% | 89%  467%  707% | 52%  472%  7122% | 22%  46.1%  744% | -03%  449%  723%
UPCC || 95011  1.6503 173322 | 84699 14134 16.8860 | 7.8835 12571 168194 | 7.5548  1.1595  16.8934 | 7.3504 1.0909  16.9664
IPCC 9.6634 07859 114606 | 89234 07124 104361 | 7.9731 0.6255 88113 | 7.4345 05855  8.0981 | 7.0241 05556  7.6114
p| UIPCC || 03104 14363 150760 | 83855 12611 142780 | 75166 10947 132519 | 7.0149 10172 128740 | 66556 09628  12.6269
PMF 6.0431 04699  2.1754 | 5.6822 04477 24413 | 53076 0.4253  2.4966 | 5.0687 04012 24129 | 4.8068 0.3863  2.3976
AMF 55427 03551 13506 | 54356 03178  1.0622 | 52974 03007 09607 | 51901 02916 09244 | 51809 0.854  0.9013
Tmp(%) || 83%  244%  379% | 43%  290%  565% | 02%  293%  615% | 24%  273%  61.7% | -18%  26.1%  624%
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