
Zibin Zheng 

zbzheng@cse.cuhk.edu.hk 

DR2: Dynamic Request 

Routing for Tolerating 

Latency Variability in 

Cloud Applications 

CLOUD 2013 

Jieming Zhu, Zibin Zheng, and 

Michael R. Lyu 
 
June 28, 2013 



2 

Outline 

 Introduction 

 Main Challenges 

 DR2 Approach 

 Experiments 

 Conclusion 



3 

Introduction 

 Cloud computing 

 Internet-based virtual computing environment 

 Shared configurable resources: infrastructure, platform, 
software, etc. 

 Pay-per-use, cost-effective 

 Online cloud applications 

 Search engine (e.g., Google) 

 Social network (e.g., Facebook) 

 E-commence website (e.g., Amazon) 

 … 

 

Fig. from Google image 



4 

Introduction 

 Application latency 

 Time duration between a request and a response 

 Evaluate the performance of online cloud applications 

 The cost of latency 

 0.5s delay: 20% drop  

    in Google’s traffic  

 0.1s delay: 1% drop  

    of Amazon’s sales. 

 Fig. from Interxion’s whitepaper 



5 

Introduction 

 However, users perceive variability on latency, 
due to: 
 Applications: involve numerous cloud components 

 Scaling up: components deployed across data centers 

 Relying on the Internet for connectivity 

 Application request example 

Example from Amazon’s page request 



6 

Introduction 

 How to build consistently low-latency cloud 
applications, with 
 Geo-distributed cloud components  

 Varying latency between components 

 Our proposal : Dynamic Request Routing (DR2) 
 Take advantage of redundant components  

 E.g., much redundancy for fault tolerance / load balancing 

 

Latency-varying 



7 

Introduction 

 A prototype of DR2 

 

Dynamically rout the requests to different 
components with timely latency minimization 



 

Challenges 



9 

Challenges 

 Latency variability 
 Relying on the Internet for  

    connectivity 

 Fluctuations over time 

 Adaptivity 
 Adaptive to the latency dynamics 

 User centricity 
 Optimize the request for each 

    single user 

 Scalability 
 Scalable and efficient 



DR2 Approach 



System Architecture 

 DR2: Dynamic Request Routing Framework 
 Phase 1: Online latency prediction 

 Phase 2: Adaptive component selection 

 

The framework of DR2 

Component 

Manager



12 

DR2: Dynamic Request Routing  

 Phase 1: Online latency prediction 
 Matrix factorization model: 

Squared sum of 

errors 

Regularization 

term 



13 

DR2: Dynamic Request Routing  

 Phase 1: Online latency prediction 
 Matrix factorization model 

 Incremental updating of virtual coordinates (continously) 

Update the virtual 

coordinates Ui, Sj  

Update the virtual 

coordinates Sh, Vk  



DR2: Dynamic Request Routing  

 Phase 2: Adaptive component selection 
 Problem formulation 

 Nodes: users and components 

 Edges: available invocations 

 Weights: predicted latencies 

 Find shortest path for each user 

 Straightforward point-point  
    Dijkstra computation 

 Not efficient  

 Proposed solution 

 Get all the shortest paths  
    in one traverse 

 14 



15 

DR2: Dynamic Request Routing  

 Phase 2: Adaptive component selection 
 Problem formulation 

 Shortest path computation (periodically update) 

Convert the original graph 

to the virtual graph (VG) 

Fast shortest path 

algorithm on DAG with 

linear complexity of O(n+m) 



Experiments 



17 

Experiments 

 Dataset description 
 Dataset1: measured by ourselves 

 1350×460 LU, 460×460 LS 

 Dataset2: extracted from [Zhang et. al 2011] 

 4532 users×142 components×64 time slices 

 Dataset3: synthetic dataset 



18 

Performance Evaluation 

 Accuracy of online latency prediction 
 Accuracy improves with the increasement of matrix 

density 

 But the increasement diminishes  



19 

Performance Evaluation 

 Performance comparison 
 Random: randomly select the candidate component 

 Greedy-M: select the best component at each step 

 DR2: our approach 

DR2 performs the best, and is close to the baseline 



20 

Performance Evaluation 

 Performance on multiple users 
 Randomly select 15 users as examples 

 User-Noncentric/Greedy-M/DR2/Baseline 

DR2 optimize the component selection for each user 



21 

Performance Evaluation 

 Performance on multiple time slices 
 Static: Not updating the component selection over time 

 DR2: Our approach (adaptive component selection) 

 Baseline: Using the exact latency data  

DR2 adapts to the dynamics and tolerates 

the latency variability 



22 

Performance Evaluation 

 Impact of parameters 
 Length of critical path 

 Components per task 

 Matrix density 

User num. = 1350, 

Componet num. = 10, 

Matrix density = 30% 

User num. = 1350, 

Criti. Path Length = 10, 

Matrix density = 30% 

User num. = 1350, 

Criti. Path Length = 10, 

Componet num. = 45 



23 

Efficiency Analysis 

 Convergence time of DR2 

 Batch-mode updating: periodically 

 Online updating: continuously 

DR2 converges faster  



24 

Efficiency Analysis 

 Scalability 

 Number of users 

 Length of the critical path 

 Component number 

Good scalability 

Criti. Path Length = 10, 

Componet num. = 500 

Users num. = 10,  

Component num. = 100 

User num. = 10,  

Criti. Path Length = 10 



 

 

 

Conclusion & 

Future Work 



26 

Conclusion 

 DR2: Dynamic request routing framework  

 Tolerating latency variability in online cloud 
applications 

 Extensive experimental results for evaluation 

 Effective, adaptive, user-centric and scalable 

 Future Work 

 Extend the current framework to consider load 
balancing strategy 

Collect more realistic application data for our 
experimentation 

 



Thank you!  
 

Dataset available: 

http://www.wsdream.net 


