CLOUD 2013

The Chinese University of Hong Kong

Presented by

Zibin Zheng zbzheng@cse.cuhk.edu.hk DR²: Dynamic Request Routing for Tolerating Latency Variability in Cloud Applications

Jieming Zhu, Zibin Zheng, and Michael R. Lyu June 28, 2013

Introduction

- Main Challenges
- DR² Approach
- **Experiments**
- Conclusion

Cloud computing

- Internet-based virtual computing environment
- Shared configurable resources: infrastructure, platform, software, etc.
- Pay-per-use, cost-effective

Online cloud applications

- Search engine (e.g., Google)
- Social network (e.g., Facebook)
- E-commence website (e.g., Amazon)

Application latency

- Time duration between a request and a response
- Evaluate the performance of online cloud applications

The cost of latency

- 0.5s delay: 20% drop in Google's traffic
- 0.1s delay: 1% drop of Amazon's sales.

Fig. from Interxion's whitepaper

However, users perceive variability on latency, due to:

- Applications: involve numerous cloud components
- Scaling up: components deployed across data centers
- Relying on the Internet for connectivity

Application request example

Example from Amazon's page request

How to build consistently low-latency cloud applications, with

- Geo-distributed cloud components
- Varying latency between components

Our proposal : Dynamic Request Routing (DR²)

- Take advantage of redundant components
 - E.g., much redundancy for fault tolerance / load balancing

□ A prototype of DR²

Dynamically rout the requests to different components with timely latency minimization

Challenges

Challenges

Latency variability

- Relying on the Internet for connectivity
- Fluctuations over time

Adaptivity

Adaptive to the latency dynamics

User centricity

Optimize the request for each single user

Scalability

Scalable and efficient

(a) Latency v.s. Time Slice

DR² Approach

DR²: Dynamic Request Routing Framework

- Phase 1: Online latency prediction
- Phase 2: Adaptive component selection

The framework of DR²

Phase 1: Online latency prediction

Matrix factorization model:

	S_1	S_{2}	S_{3}	S_4		S_1	S_{2}	$S_{_3}$	S_4
U_{1}	0.2	?	0.3	?	S_1	0	?	0.7	?
$U_{_2}$?	0.3	?	0.4	S_{2}	?	0	?	0.8
$U_{\rm 3}$	0.4	0.6	?	?	S_3	0.5	0.6	0	?
$U_{\rm 4}$?	?	0.8	0.6	S_4	?	0.4	0.3	0
(a) L^U Matrix					(b) L^S Matrix				

$$\min \Psi(U, S, V) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} I_{ij}^{U} (L_{ij}^{U} - U_{i}'S_{j})^{2}$$

$$+ \frac{1}{2} \sum_{k=1}^{m} \sum_{h=1}^{m} I_{kh}^{S} (L_{kh}^{S} - V_{k}'S_{h})^{2}$$

$$+ \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{S}}{2} \|S\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2}$$

$$Regularization term$$

Phase 1: Online latency prediction

- Matrix factorization model
- Incremental updating of virtual coordinates (continously)

$$(u_{i}, s_{j}, L_{ij}^{U}) \longrightarrow \psi(U_{i}, S_{j}) = \frac{1}{2} (L_{ij}^{U} - U_{i}'S_{j})^{2} + \frac{\lambda_{u}}{2} \|U_{i}\|_{2}^{2} + \frac{\lambda_{s}}{2} \|S_{j}\|_{2}^{2},$$

$$(s_{k}, s_{h}, L_{kh}^{S}) \longrightarrow \psi(V_{k}, S_{h}) = \frac{1}{2} (L_{kh}^{S} - V_{k}'S_{h})^{2} + \frac{\lambda_{s}}{2} \|S_{h}\|_{2}^{2} + \frac{\lambda_{v}}{2} \|V_{k}\|_{2}^{2}.$$

Algorithm 1: Online Latency Prediction Algorithm **Input**: Latency data: L_{ij}^U , L_{kh}^S **Output**: The virtual coordinates: U_i , S_j , V_k 1 Randomly initialize $U \in \mathbb{R}^{d \times n}$, and $S, V \in \mathbb{R}^{d \times m}$; 2 repeat /* Incremental updating */ Collect historical latency data: 3 if receive a latency data sample (u_i, s_j, L_{ij}^U) then 4 Update the virtual $U_i \leftarrow U_i - \eta((U_i^T S_j - L_{ij}^U)S_j + \lambda_u U_i);$ 5 coordinates U_i , S_i $S_j \leftarrow S_j - \eta((U_i^T S_j - L_{ij}^U)U_i + \lambda_s S_j);$ 6 else if receive a latency data sample (s_k, s_h, L_{kh}^S) then 7 Update the virtual $S_h \leftarrow S_h - \eta((V_k^T S_h - L_{kh}^S)S_h + \lambda_v V_k);$ 8 coordinates S_h , V_k $V_k \leftarrow V_k - \eta((V_k^T S_h - L_{kh}^S)V_k + \lambda_s S_h);$ 9 10 until converge;

DR²: Dynamic Request Routing

Phase 2: Adaptive component selection

Problem formulation

- Nodes: users and components
- Edges: available invocations
- Weights: predicted latencies
- Find shortest path for each user
- Straightforward point-point Dijkstra computation
 - Not efficient

Proposed solution

Get all the shortest paths in one traverse

Phase 2: Adaptive component selection

Problem formulation

Shortest path computation (periodically update)

Algorithm 2: Adaptive Component Selection **Input**: Critical Path, Virtual coordinates: U_i , S_j , V_k **Output:** Component selection strategy 1 Construct the virtual graph VG based on the critical path; 2 Topologically sort VG to VG_list; 3 foreach node v in VG list do /* Initialization */ if $v \in user$ then v.out $\leftarrow U_i$; v.in \leftarrow none; 5 else v.out $\leftarrow V_k$; v.in $\leftarrow S_i$; 6 if v is in the last level of the critical path then 7 v.latency $\leftarrow 0$; 8 else v.latency \leftarrow inf; 9 10 v.parent \leftarrow none; 11 foreach node v in VG list do foreach node w in adjacency of v do 12 if w.latency lg v.latency + w.out'*v.in then 13 w.latency \leftarrow v.latency + w.out'*v.in; 14 15 w.parent \leftarrow v; 16 foreach node $v \in user$ do /* Output the selection strategy v.path */ add v.parent to v.path; 17

Convert the original graph to the virtual graph (VG)

Fast shortest path algorithm on DAG with linear complexity of O(n+m)

Experiments

Dataset description

- Dataset1: measured by ourselves
 - 1350×460 *L^U*, 460×460 *L^S*
- Dataset2: extracted from [Zhang et. al 2011]
 - 4532 users × 142 components × 64 time slices
- Dataset3: synthetic dataset

Accuracy of online latency prediction

- Accuracy improves with the increasement of matrix density
- But the increasement diminishes

Performance comparison

- **Random**: randomly select the candidate component
- **Greedy-M**: select the best component at each step
- DR²: our approach

TABLE I. PERFORMANCE COMPARISON

Methods	Density = 10%	Density = 20%	Density = 30%	Density = 40%	Density = 50%	Density = 100%
i i i i i i i i i i i i i i i i i i i	$ARE \pm std$	$ARE \pm std$	$ARE \pm std$	$ARE \pm std$	$ARE \pm std$	ARE
Random	6.444 ± 0.088	6.446 ± 0.047	6.435 ± 0.043	6.431 ± 0.035	6.405 ± 0.069	6.436
Greedy-M	0.888 ± 0.194	0.613 ± 0.086	0.517 ± 0.110	0.506 ± 0.087	0.496 ± 0.092	0.656
\mathbf{DR}^2	$\textbf{0.412} \pm \textbf{0.108}$	0.269 ± 0.045	0.163 ± 0.043	$\textbf{0.129} \pm \textbf{0.020}$	$\textbf{0.089} \pm \textbf{0.025}$	0

DR² performs the best, and is close to the baseline

Performance on multiple users

- Randomly select 15 users as examples
- User-Noncentric/Greedy-M/DR²/Baseline

DR² optimize the component selection for each user

Performance on multiple time slices

- **Static:** Not updating the component selection over time
- DR²: Our approach (adaptive component selection)
- Baseline: Using the exact latency data

DR² adapts to the dynamics and tolerates the latency variability

(a) Peformance on Multi. Time Slices

Performance Evaluation

Impact of parameters

- Length of critical path
- Components per task
- Matrix density

(b) Impact: Length of Critical Path

User num. = 1350, Componet num. = 10, Matrix density = 30%

(c) Impact: Components per Task

User num. = 1350, Criti. Path Length = 10, Matrix density = 30%

(d) Impact: Matrix Density

User num. = 1350, Criti. Path Length = 10, Componet num. = 45

Convergence time of DR²

- Batch-mode updating: periodically
- Online updating: continuously

DR² converges faster

Efficiency Analysis

Scalability

- Number of users
- Length of the critical path
- Component number

Good scalability

(b) Running Time v.s. Num. of Users (c) Running Time v.s. Crit. Path Leng. (d) Running Time v.s. Compon. Num.

Criti. Path Length = 10, Componet num. = 500 Users num. = 10, Component num. = 100 User num. = 10, Criti. Path Length = 10

Conclusion & Future Work

DR²: Dynamic request routing framework

- Tolerating latency variability in online cloud applications
- Extensive experimental results for evaluation
- Effective, adaptive, user-centric and scalable

Future Work

- Extend the current framework to consider load balancing strategy
- Collect more realistic application data for our experimentation

Thank you!

Dataset available: http://www.wsdream.net